ترغب بنشر مسار تعليمي؟ اضغط هنا

Ultrafast carrier dynamics in pristine and FeCl3-intercalated bilayer graphene

119   0   0.0 ( 0 )
 نشر من قبل Xingquan Zou
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Ultrafast carrier dynamics of pristine bilayer graphene (BLG) and bilayer graphene intercalated with FeCl3 (FeCl3-G), were studied using time-resolved transient differential reflection (delta R/R). Compared to BLG, the FeCl3-G data showed an opposite sign of delta R/R, a slower rise time, and a single (instead of double) exponential relaxation. We attribute these differences in dynamics to the down-shifting of the Fermi level in FeCl3-G, as well as the formation of numerous horizontal bands arising from the d-orbitals of Fe. Our work shows that intercalation can dramatically change the electronic structure of graphene, and its associated carrier dynamics.



قيم البحث

اقرأ أيضاً

Graphene is an ideal material to study fundamental Coulomb- and phonon-induced carrier scattering processes. Its remarkable gapless and linear band structure opens up new carrier relaxation channels. In particular, Auger scattering bridging the valen ce and the conduction band changes the number of charge carriers and gives rise to a significant carrier multiplication - an ultrafast many-particle phenomenon that is promising for the design of highly efficient photodetectors. Furthermore, the vanishing density of states at the Dirac point combined with ultrafast phonon-induced intraband scattering results in an accumulation of carriers and a population inversion suggesting the design of graphene-based terahertz lasers. Here, we review our work on the ultrafast carrier dynamics in graphene and Landau-quantized graphene is presented providing a microscopic view on the appearance of carrier multiplication and population inversion.
Bilayer graphene is a highly promising material for electronic and optoelectronic applications since it is supporting massive Dirac fermions with a tuneable band gap. However, no consistent picture of the gaps effect on the optical and transport beha vior has emerged so far, and it has been proposed that the insulating nature of the gap could be compromised by unavoidable structural defects, by topological in-gap states, or that the electronic structure could be altogether changed by many-body effects. Here we directly follow the excited carriers in bilayer graphene on a femtosecond time scale, using ultrafast time- and angle-resolved photoemission. We find a behavior consistent with a single-particle band gap. Compared to monolayer graphene, the existence of this band gap leads to an increased carrier lifetime in the minimum of the lowest conduction band. This is in sharp contrast to the second sub-state of the conduction band, in which the excited electrons decay through fast, phonon-assisted inter-band transitions.
135 - D. Brida , A. Tomadin , C. Manzoni 2012
Graphene is emerging as a viable alternative to conventional optoelectronic, plasmonic, and nanophotonic materials. The interaction of light with carriers creates an out-of-equilibrium distribution, which relaxes on an ultrafast timescale to a hot Fe rmi-Dirac distribution, that subsequently cools via phonon emission. Here we combine pump-probe spectroscopy, featuring extreme temporal resolution and broad spectral coverage, with a microscopic theory based on the quantum Boltzmann equation, to investigate electron-electron collisions in graphene during the very early stages of relaxation. We identify the fundamental physical mechanisms controlling the ultrafast dynamics in graphene, in particular the significant role of ultrafast collinear scattering, enabling Auger processes, including charge multiplication, key to improving photovoltage generation and photodetectors.
We study theoretically interaction of a bilayer graphene with a circularly polarized ultrafast optical pulse of a single oscillation at an oblique incidence. The normal component of the pulse breaks the inversion symmetry of the system and opens up a dynamical band-gap, due to which a valley-selective population of the conduction band becomes sensitive to the angle of incident of the pulse. We show that the magnitude of the valley polarization can be controlled by the angle of incidence, the amplitude, and the angle of in-plane polarization of the chiral optical pulse. Subsequently, a sequence of a circularly polarized pulse followed by a linearly polarized femtosecond-long pulse can be used to control the valley polarization created by the preceding pulse. Generally, the linearly polarized pulse depolarizes the system. The magnitude of such a depolarization depends on the amplitude, and the in-plane polarization angle of the linearly polarized pulse. Our protocol provides a favorable platform for applications in valleytronics.
97 - M. Trushin , A. Grupp , G. Soavi 2015
Interband optical transitions in graphene are subject to pseudospin selection rules. Impulsive excitation with linearly polarized light generates an anisotropic photocarrier occupation in momentum space that evolves at timescales shorter than 100fs. Here, we investigate the evolution of non-equilibrium charges towards an isotropic distribution by means of fluence-dependent ultrafast spectroscopy and develop an analytical model able to quantify the isotropization process. In contrast to conventional semiconductors, the isotropization is governed by optical phonon emission, rather than electron-electron scattering, which nevertheless contributes in shaping the anisotropic photocarrier occupation within the first few fs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا