ترغب بنشر مسار تعليمي؟ اضغط هنا

Graphene-Based Liquid Crystal Device

131   0   0.0 ( 0 )
 نشر من قبل Kostya Novoselov
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Graphene is only one atom thick, optically transparent, chemically inert and an excellent conductor. These properties seem to make this material an excellent candidate for applications in various photonic devices that require conducting but transparent thin films. In this letter we demonstrate liquid crystal devices with electrodes made of graphene which show excellent performance with a high contrast ratio. We also discuss the advantages of graphene compared to conventionally-used metal oxides in terms of low resistivity, high transparency and chemical stability.



قيم البحث

اقرأ أيضاً

428 - V. Ryzhii , M. Ryzhii , A. Satou 2008
We present an analytical device model for a graphene bilayer field-effect transistor (GBL-FET) with a graphene bilayer as a channel, and with back and top gates. The model accounts for the dependences of the electron and hole Fermi energies as well a s energy gap in different sections of the channel on the bias back-gate and top-gate voltages. Using this model, we calculate the dc and ac source-drain currents and the transconductance of GBL-FETs with both ballistic and collision dominated electron transport as functions of structural parameters, the bias back-gate and top-gate voltages, and the signal frequency. It is shown that there are two threshold voltages, $V_{th,1}$ and $V_{th,2}$, so that the dc current versus the top-gate voltage relation markedly changes depending on whether the section of the channel beneath the top gate (gated section) is filled with electrons, depleted, or filled with holes. The electron scattering leads to a decrease in the dc and ac currents and transconductances, whereas it weakly affects the threshold frequency. As demonstrated, the transient recharging of the gated section by holes can pronouncedly influence the ac transconductance resulting in its nonmonotonic frequency dependence with a maximum at fairly high frequencies.
We discuss transport through double gated single and few layer graphene devices. This kind of device configuration has been used to investigate the modulation of the energy band structure through the application of an external perpendicular electric field, a unique property of few layer graphene systems. Here we discuss technological details that are important for the fabrication of top gated structures, based on electron-gun evaporation of SiO$_2$. We perform a statistical study that demonstrates how --contrary to expectations-- the breakdown field of electron-gun evaporated thin SiO$_2$ films is comparable to that of thermally grown oxide layers. We find that a high breakdown field can be achieved in evaporated SiO$_2$ only if the oxide deposition is directly followed by the metallization of the top electrodes, without exposure to air of the SiO$_2$ layer.
We report a systematic study of the contact resistance present at the interface between a metal (Ti) and graphene layers of different, known thickness. By comparing devices fabricated on 11 graphene flakes we demonstrate that the contact resistance i s quantitatively the same for single-, bi-, and tri-layer graphene ($sim800 pm 200 Omega mu m$), and is in all cases independent of gate voltage and temperature. We argue that the observed behavior is due to charge transfer from the metal, causing the Fermi level in the graphene region under the contacts to shift far away from the charge neutrality point.
Single molecular electrets exhibiting single molecule electric polarization switching have been long desired as a platform for extremely small non-volatile storage devices, although it is controversial because of the poor stability of single molecula r electric dipoles. Here we study the single molecular device of GdC82, where the encapsulated Gd atom forms a charge center, and we have observed a gate controlled switching behavior between two sets of single electron transport stability diagrams. The switching is operated in a hysteresis loop with a coercive gate field of around 0.5Vnm. Theoretical calculations have assigned the two conductance diagrams to corresponding energy levels of two states that the Gd atom is trapped at two different sites of the C82 cage, which possess two different permanent electrical dipole orientations. The two dipole states are stabilized by the anisotropic energy and separated by a transition energy barrier of 70 meV. Such switching is then accessed to the electric field driven reorientation of individual dipole while overcoming the barriers by the coercive gate field, and demonstrates the creation of a single molecular electret.
We propose to use graphene-based Josephson junctions (gJjs) to detect single photons in a wide electromagnetic spectrum from visible to radio frequencies. Our approach takes advantage of the exceptionally low electronic heat capacity of monolayer gra phene and its constricted thermal conductance to its phonon degrees of freedom. Such a system could provide high sensitivity photon detection required for research areas including quantum information processing and radio-astronomy. As an example, we present our device concepts for gJj single photon detectors in both the microwave and infrared regimes. The dark count rate and intrinsic quantum efficiency are computed based on parameters from a measured gJj, demonstrating feasibility within existing technologies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا