ﻻ يوجد ملخص باللغة العربية
In this short note, we give a characterization of Fr{e}chet spaces via properties of their metric. This allows us to prove that the Hausdorff measure of noncompactness (MNC), defined over Fr{e}chet spaces, is indeed an MNC. As first applications, we lift well-known fixed-point theorems for contractive and condensing operators to the setting of Fr{e}chet spaces.
We calculate exactly the Laplace transform of the Fr{e}chet distribution in the form $gamma x^{-(1+gamma)} exp(-x^{-gamma})$, $gamma > 0$, $0 leq x < infty$, for arbitrary rational values of the shape parameter $gamma$, i.e. for $gamma = l/k$ with $l
Let $Gamma(E)$ be the family of all paths which meet a set $E$ in the metric measure space $X$. The set function $E mapsto AM(Gamma(E))$ defines the $AM$--modulus measure in $X$ where $AM$ refers to the approximation modulus. We compare $AM(Gamma(E))
We prove the classical Hausdorff-Young inequality for Orlicz spaces on compact homogeneous manifolds.
In this paper, we introduce the Hausdorff operator associated with the Opdam--Cherednik transform and study the boundedness of this operator in various Lebesgue spaces. In particular, we prove the boundedness of the Hausdorff operator in Lebesgue spa
In this paper we give exact values of the best $n$-term approximation widths of diagonal operators between $ell_p(mathbb{N})$ and $ell_q(mathbb{N})$ with $0<p,qleq infty$. The result will be applied to obtain the asymptotic constants of best $n$-term