ﻻ يوجد ملخص باللغة العربية
Let $Gamma(E)$ be the family of all paths which meet a set $E$ in the metric measure space $X$. The set function $E mapsto AM(Gamma(E))$ defines the $AM$--modulus measure in $X$ where $AM$ refers to the approximation modulus. We compare $AM(Gamma(E))$ to the Hausdorff measure $comathcal H^1(E)$ of codimension one in $X$ and show that $$comathcal H^1(E) approx AM(Gamma(E))$$ for Suslin sets $E$ in $X$. This leads to a new characterization of sets of finite perimeter in $X$ in terms of the $AM$--modulus. We also study the level sets of $BV$ functions and show that for a.e. $t$ these sets have finite $comathcal H^1$--measure. Most of the results are new also in $mathbb R^n$.
In this note we give several characterisations of weights for two-weight Hardy inequalities to hold on general metric measure spaces possessing polar decompositions. Since there may be no differentiable structure on such spaces, the inequalities are
We show that given a homeomorphism $f:GrightarrowOmega$ where $G$ is a open subset of $mathbb{R}^2$ and $Omega$ is a open subset of a $2$-Ahlfors regular metric measure space supporting a weak $(1,1)$-Poincare inequality, it holds $fin BV_{operatorna
In this note we continue giving the characterisation of weights for two-weight Hardy inequalities to hold on general metric measure spaces possessing polar decompositions. Since there may be no differentiable structure on such spaces, the inequalitie
We prove that on an essentially non-branching $mathrm{MCP}(K,N)$ space, if a geodesic ball has a volume lower bound and satisfies some additional geometric conditions, then in a smaller geodesic ball (in a quantified sense) we have an estimate on the isoperimetric constants.
Multidimensional scaling (MDS) is a popular technique for mapping a finite metric space into a low-dimensional Euclidean space in a way that best preserves pairwise distances. We study a notion of MDS on infinite metric measure spaces, along with its