ترغب بنشر مسار تعليمي؟ اضغط هنا

Sterile Neutrinos and the Global Reactor Antineutrino Dataset

135   0   0.0 ( 0 )
 نشر من قبل Jeffrey Berryman
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present results from global fits to the available reactor antineutrino dataset, as of Fall 2019, to determine the global preference for a fourth, sterile neutrino. We have separately considered experiments that measure the integrated inverse-beta decay (IBD) rate from those that measure the energy spectrum of IBD events at one or more locations. The software used is the newly developed GLoBESfit tool set which is based on the publicly available GLoBES framework and will be released as open-source software.



قيم البحث

اقرأ أيضاً

We discuss a possibility that the so-called reactor antineutrino anomaly can be, at least in part, explained by applying a quantum field-theoretical approach to neutrino oscillations, which in particular predicts a small deviation from the classical inverse-square law at short but macroscopic distances between the neutrino source and detector. An extensive statistical analysis of the reactor data is performed to examine this speculation.
100 - Christian Buck 2017
Nuclear reactors are strong, pure and well localized sources of electron antineutrinos with energies in the few MeV range. Therefore they provide a suitable environment to study neutrino properties, in particular neutrino oscillation parameters. Rece nt predictions of the expected antineutrino flux at nuclear reactors are about 6% higher than the average rate measured in different experiments. This discrepancy, known as the reactor antineutrino anomaly, is significant at the 2.5{sigma} level. Several new experiments are searching for the origin of this observed neutrino deficit. One hypothesis to be tested is an oscillation to another neutrino state. In a three flavor model reactor neutrinos do not oscillate at baselines below 100 m. Hence, if such an oscillation is observed, it would imply the existence of at least one light sterile neutrino state not participating in weak interactions. Such a discovery would open the gate for new physics beyond the Standard Model.
One of the most puzzling questions in neutrino physics is the origin of the excess at 5 MeV in the reactor antineutrino spectrum. In this paper, we explore the excess via the reaction $^{13}$C$(overline{ u}, overline{ u}^prime n)^{12}$C$^*$ in organi c scintillator detectors. The de-excitation of $^{12}$C$^*$ yields a prompt $4.4$ MeV photon, while the thermalization of the product neutron causes proton recoils, which in turn yield an additional prompt energy contribution with finite width. Together, these effects can mimic an inverse beta decay event with around 5 MeV energy. We consider several non-standard neutrino interactions to produce such a process and find that the parameter space preferred by Daya Bay is disfavored by measurements of neutrino-induced deuteron disintegration and coherent elastic neutrino-nucleus scattering. While non-minimal particle physics scenarios may be viable, a nuclear physics solution to this anomaly appears more appealing.
We use an effective-field-theory approach to construct models with naturally light sterile neutrinos, due to either exact or accidental global symmetries. The most attractive models we find are based on gauge symmetries, either discrete or continuous . We give examples of simple models based on Z_N, U(1), and SU(2).
The simulation of an experiment on looking for sterile neutrinos at a nuclear reactor at short distances is presented. It has been shown that statistical fluctuations in experimental bins always imitate the oscillatory behavior of the spectrum. An am plitude of the detectable oscillations decreases when statistics grows up in case of oscillations absence, while mass parameter tends to be accidental. When we simulate spectra in a detector with oscillations the parameters found in fitting become close to parameters applied to spectra starting from statistics 10$^5$ events in near detector.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا