ﻻ يوجد ملخص باللغة العربية
We present results from global fits to the available reactor antineutrino dataset, as of Fall 2019, to determine the global preference for a fourth, sterile neutrino. We have separately considered experiments that measure the integrated inverse-beta decay (IBD) rate from those that measure the energy spectrum of IBD events at one or more locations. The software used is the newly developed GLoBESfit tool set which is based on the publicly available GLoBES framework and will be released as open-source software.
We discuss a possibility that the so-called reactor antineutrino anomaly can be, at least in part, explained by applying a quantum field-theoretical approach to neutrino oscillations, which in particular predicts a small deviation from the classical
Nuclear reactors are strong, pure and well localized sources of electron antineutrinos with energies in the few MeV range. Therefore they provide a suitable environment to study neutrino properties, in particular neutrino oscillation parameters. Rece
One of the most puzzling questions in neutrino physics is the origin of the excess at 5 MeV in the reactor antineutrino spectrum. In this paper, we explore the excess via the reaction $^{13}$C$(overline{ u}, overline{ u}^prime n)^{12}$C$^*$ in organi
We use an effective-field-theory approach to construct models with naturally light sterile neutrinos, due to either exact or accidental global symmetries. The most attractive models we find are based on gauge symmetries, either discrete or continuous
The simulation of an experiment on looking for sterile neutrinos at a nuclear reactor at short distances is presented. It has been shown that statistical fluctuations in experimental bins always imitate the oscillatory behavior of the spectrum. An am