ترغب بنشر مسار تعليمي؟ اضغط هنا

Reconfigurable photon sources based on quantum plexcitonic systems

236   0   0.0 ( 0 )
 نشر من قبل Jiabin You
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A single photon in a strongly nonlinear cavity is able to block the transmission of the second photon, thereby converting incident coherent light into anti-bunched light, which is known as photon blockade effect. On the other hand, photon anti-pairing, where only the entry of two photons is blocked and the emission of bunches of three or more photons is allowed, is based on an unconventional photon blockade mechanism due to destructive interference of two distinct excitation pathways. We propose quantum plexcitonic systems with moderate nonlinearity to generate both anti-bunched and anti-paired photons. The proposed plexitonic systems benefit from subwavelength field localizations that make quantum emitters spatially distinguishable, thus enabling a reconfigurable photon source between anti-bunched and anti-paired states via tailoring the energy bands. For a realistic nanoprism plexitonic system, two schemes of reconfiguration are suggested: (i) the chemical means by partially changing the type of the emitters; or (ii) the optical approach by rotating the polarization angle of the incident light to tune the coupling rate of the emitters. These results pave the way to realize reconfigurable nonclassical photon sources in a simple quantum plexcitonic platform with readily accessible experimental conditions.



قيم البحث

اقرأ أيضاً

250 - H. Jin , F. M. Liu , P. Xu 2014
Integrated quantum optics becomes a consequent tendency towards practical quantum information processing. Here, we report the on-chip generation and manipulation of photonic entanglement based on reconfigurable lithium niobate waveguide circuits. By introducing periodically poled structure into the waveguide interferometer, two individual photon-pair sources with controllable phase-shift are produced and cascaded by a quantum interference, resulting in a deterministically separated identical photon pair. The state is characterized by 92.9% visibility Hong-Ou-Mandel interference. Continuous morphing from two-photon separated state to bunched state is further demonstrated by on-chip control of electro-optic phase-shift. The photon flux reaches ~1.4*10^7 pairs nm-1 mW-1. Our work presents a scenario for on-chip engineering of different photon sources and paves a way to the fully integrated quantum technologies.
Entangled photon-pairs are a critical resource in quantum communication protocols ranging from quantum key distribution to teleportation. The current workhorse technique for producing photon-pairs is via spontaneous parametric down conversion (SPDC) in bulk nonlinear crystals. The increased prominence of quantum networks has led to growing interest in deployable high performance entangled photon-pair sources. This manuscript provides a review of the state-of-the-art for bulk-optics-based SPDC sources with continuous wave pump, and discusses some of the main considerations when building for deployment.
We report a compact, scalable, quantum photonic integrated circuit realised by combining multiple, independent InGaAs/GaAs quantum-light-emitting-diodes (QLEDs) with a silicon oxynitride waveguide circuit. Each waveguide joining the circuit can then be excited by a separate, independently electrically contacted QLED. We show that the emission from neighbouring QLEDs can be independently tuned to degeneracy using the Stark Effect and that the resulting photon streams are indistinguishable. This enables on-chip Hong-Ou-Mandel-type interference, as required for many photonic quantum information processing schemes.
By coupling controllable quantum systems into larger structures we introduce the concept of a quantum metamaterial. Conventional meta-materials represent one of the most important frontiers in optical design, with applications in diverse fields rangi ng from medicine to aerospace. Up until now however, metamaterials have themselves been classical structures and interact only with the classical properties of light. Here we describe a class of dynamic metamaterials, based on the quantum properties of coupled atom-cavity arrays, which are intrinsically lossless, reconfigurable, and operate fundamentally at the quantum level. We show how this new class of metamaterial could be used to create a reconfigurable quantum superlens possessing a negative index gradient for single photon imaging. With the inherent features of quantum superposition and entanglement of metamaterial properties, this new class of dynamic quantum metamaterial, opens a new vista for quantum science and technology.
The ultimate goal of quantum information science is to build a global quantum network, which enables quantum resources to be distributed and shared between remote parties. Such quantum network can be realized by all fiber elements, which takes advant age of low transmission loss,low cost, scalable and mutual fiber communication techniques such as dense wavelength division multiplexing. Therefore high quality entangled photon sources based on fibers are on demanding for building up such kind of quantum network. Here we report multiplexed polarization and timebin entanglement photon sources based on dispersion shifted fiber operating at room temperature. High qualities of entanglement are characterized by using interference, Bell inequality and quantum state tomography. Simultaneous presence of entanglements in multichannel pairs of a 100GHz DWDM shows the great capacity for entanglements distribution over multi-users. Our research provides a versatile platform and moves a first step toward constructing an all fiber quantum network.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا