ﻻ يوجد ملخص باللغة العربية
Understanding ego-motion and surrounding vehicle state is essential to enable automated driving and advanced driving assistance technologies. Typical approaches to solve this problem use fusion of multiple sensors such as LiDAR, camera, and radar to recognize surrounding vehicle state, including position, velocity, and orientation. Such sensing modalities are overly complex and costly for production of personal use vehicles. In this paper, we propose a novel machine learning method to estimate ego-motion and surrounding vehicle state using a single monocular camera. Our approach is based on a combination of three deep neural networks to estimate the 3D vehicle bounding box, depth, and optical flow from a sequence of images. The main contribution of this paper is a new framework and algorithm that integrates these three networks in order to estimate the ego-motion and surrounding vehicle state. To realize more accurate 3D position estimation, we address ground plane correction in real-time. The efficacy of the proposed method is demonstrated through experimental evaluations that compare our results to ground truth data available from other sensors including Can-Bus and LiDAR.
We propose a semantics-driven unsupervised learning approach for monocular depth and ego-motion estimation from videos in this paper. Recent unsupervised learning methods employ photometric errors between synthetic view and actual image as a supervis
Most of the deep-learning based depth and ego-motion networks have been designed for visible cameras. However, visible cameras heavily rely on the presence of an external light source. Therefore, it is challenging to use them under low-light conditio
A new unsupervised learning method of depth and ego-motion using multiple masks from monocular video is proposed in this paper. The depth estimation network and the ego-motion estimation network are trained according to the constraints of depth and e
Vision is one of the primary sensing modalities in autonomous driving. In this paper we look at the problem of estimating the velocity of road vehicles from a camera mounted on a moving car. Contrary to prior methods that train end-to-end deep networ
Recent work has shown that CNN-based depth and ego-motion estimators can be learned using unlabelled monocular videos. However, the performance is limited by unidentified moving objects that violate the underlying static scene assumption in geometric