ﻻ يوجد ملخص باللغة العربية
The cotangent complex of a map of commutative rings is a central object in deformation theory. Since the 1990s, it has been generalized to the homotopical setting of $E_infty$-ring spectra in various ways. In this work we first establish, in the context of $infty$-categories and using Goodwillies calculus of functors, that various definitions of the cotangent complex of a map of $E_infty$-ring spectra that exist in the literature are equivalent. We then turn our attention to a specific example. Let $R$ be an $E_infty$-ring spectrum and $mathrm{Pic}(R)$ denote its Picard $E_infty$-group. Let $Mf$ denote the Thom $E_infty$-$R$-algebra of a map of $E_infty$-groups $f:Gto mathrm{Pic}(R)$; examples of $Mf$ are given by various flavors of cobordism spectra. We prove that the cotangent complex of $Rto Mf$ is equivalent to the smash product of $Mf$ and the connective spectrum associated to $G$.
We review and extend the theory of Thom spectra and the associated obstruction theory for orientations. We recall (from May, Quinn, and Ray) that a commutative ring spectrum A has a spectrum of units gl(A). To a map of spectra f: b -> bgl(A), we asso
We introduce a general theory of parametrized objects in the setting of infinity categories. Although spaces and spectra parametrized over spaces are the most familiar examples, we establish our theory in the generality of objects of a presentable in
We apply an announced result of Blumberg-Cohen-Schlichtkrull to reprove (under restricted hypotheses) a theorem of Mahowald: the connective real and complex K-theory spectra are not Thom spectra.
Let $f:Gto mathrm{Pic}(R)$ be a map of $E_infty$-groups, where $mathrm{Pic}(R)$ denotes the Picard space of an $E_infty$-ring spectrum $R$. We determine the tensor $Xotimes_R Mf$ of the Thom $E_infty$-$R$-algebra $Mf$ with a space $X$; when $X$ is th
We extend the theory of Thom spectra and the associated obstruction theory for orientations in order to support the construction of the string orientation of tmf, the spectrum of topological modular forms. We also develop the analogous theory of Thom