ترغب بنشر مسار تعليمي؟ اضغط هنا

Parametrized spectra, multiplicative Thom spectra, and the twisted Umkehr map

171   0   0.0 ( 0 )
 نشر من قبل Andrew Blumberg
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a general theory of parametrized objects in the setting of infinity categories. Although spaces and spectra parametrized over spaces are the most familiar examples, we establish our theory in the generality of objects of a presentable infinity category parametrized over objects of an infinity topos. We obtain a coherent functor formalism describing the relationship of the various adjoint functors associated to base-change and symmetric monoidal structures. Our main applications are to the study of generalized Thom spectra. We obtain fiberwise constructions of twisted Umkehr maps for twisted generalized cohomology theories using a geometric fiberwise construction of Atiyah duality. In order to characterize the algebraic structures on generalized Thom spectra and twisted (co)homology, we characterize the generalized Thom spectrum as a categorification of the well-known adjunction between units and group rings.



قيم البحث

اقرأ أيضاً

We review and extend the theory of Thom spectra and the associated obstruction theory for orientations. We recall (from May, Quinn, and Ray) that a commutative ring spectrum A has a spectrum of units gl(A). To a map of spectra f: b -> bgl(A), we asso ciate a commutative A-algebra Thom spectrum Mf, which admits a commutative A-algebra map to R if and only if b -> bgl(A) -> bgl(R) is null. If A is an associative ring spectrum, then to a map of spaces f: B -> BGL(A) we associate an A-module Thom spectrum Mf, which admits an R-orientation if and only if B -> BGL(A) -> BGL(R) is null. We also note that BGL(A) classifies the twists of A-theory. We develop and compare two approaches to the theory of Thom spectra. The first involves a rigidified model of A-infinity and E-infinity spaces. Our second approach is via infinity categories. In order to compare these approaches to one another and to the classical theory, we characterize the Thom spectrum functor from the perspective of Morita theory.
102 - Nima Rasekh , Bruno Stonek 2020
The cotangent complex of a map of commutative rings is a central object in deformation theory. Since the 1990s, it has been generalized to the homotopical setting of $E_infty$-ring spectra in various ways. In this work we first establish, in the co ntext of $infty$-categories and using Goodwillies calculus of functors, that various definitions of the cotangent complex of a map of $E_infty$-ring spectra that exist in the literature are equivalent. We then turn our attention to a specific example. Let $R$ be an $E_infty$-ring spectrum and $mathrm{Pic}(R)$ denote its Picard $E_infty$-group. Let $Mf$ denote the Thom $E_infty$-$R$-algebra of a map of $E_infty$-groups $f:Gto mathrm{Pic}(R)$; examples of $Mf$ are given by various flavors of cobordism spectra. We prove that the cotangent complex of $Rto Mf$ is equivalent to the smash product of $Mf$ and the connective spectrum associated to $G$.
We apply an announced result of Blumberg-Cohen-Schlichtkrull to reprove (under restricted hypotheses) a theorem of Mahowald: the connective real and complex K-theory spectra are not Thom spectra.
We develop a generalization of the theory of Thom spectra using the language of infinity categories. This treatment exposes the conceptual underpinnings of the Thom spectrum functor: we use a new model of parametrized spectra, and our definition is m otivated by the geometric definition of Thom spectra of May-Sigurdsson. For an associative ring spectrum $R$, we associate a Thom spectrum to a map of infinity categories from the infinity groupoid of a space $X$ to the infinity category of free rank one $R$-modules, which we show is a model for $BGL_1 R$; we show that $BGL_1 R$ classifies homotopy sheaves of rank one $R$-modules, which we call $R$-line bundles. We use our $R$-module Thom spectrum to define the twisted $R$-homology and cohomology of an $R$-line bundle over a space $X$, classified by a map from $X$ to $BGL_1 R$, and we recover the generalized theory of orientations in this context. In order to compare this approach to the classical theory, we characterize the Thom spectrum functor axiomatically, from the perspective of Morita theory. An earlier version of this paper was part of arXiv:0810.4535.
Let $f:Gto mathrm{Pic}(R)$ be a map of $E_infty$-groups, where $mathrm{Pic}(R)$ denotes the Picard space of an $E_infty$-ring spectrum $R$. We determine the tensor $Xotimes_R Mf$ of the Thom $E_infty$-$R$-algebra $Mf$ with a space $X$; when $X$ is th e circle, the tensor with $X$ is topological Hochschild homology over $R$. We use the theory of localizations of $infty$-categories as a technical tool: we contribute to this theory an $infty$-categorical analogue of Days reflection theorem about closed symmetric monoidal structures on localizations, and we prove that for a smashing localization $L$ of the $infty$-category of presentable $infty$-categories, the free $L$-local presentable $infty$-category on a small simplicial set $K$ is given by presheaves on $K$ valued on the $L$-localization of the $infty$-category of spaces. If $X$ is a pointed space, a map $g: Ato B$ of $E_infty$-ring spectra satisfies $X$-base change if $Xotimes B$ is the pushout of $Ato Xotimes A$ along $g$. Building on a result of Mathew, we prove that if $g$ is etale then it satisfies $X$-base change provided $X$ is connected. We also prove that $g$ satisfies $X$-base change provided the multiplication map of $B$ is an equivalence. Finally, we prove that, under some hypotheses, the Thom isomorphism of Mahowald cannot be an instance of $S^0$-base change.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا