ترغب بنشر مسار تعليمي؟ اضغط هنا

Electronic nematicity in URu2Si2 revisited

125   0   0.0 ( 0 )
 نشر من قبل Fr\\'ed\\'eric Hardy
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The nature of the hidden-order (HO) state in URu2Si2 remains one of the major unsolved issues in heavy-fermion physics. Recently, torque magnetometry, x-ray diffraction and elastoresistivity data have suggested that the HO phase transition at THO = 17.5 K is driven by electronic nematic effects. Here, we search for thermodynamic signatures of this purported structural instability using anisotropic thermal-expansion, Youngs modulus, elastoresistivity and specific-heat measurements. In contrast to the published results, we find no evidence of a rotational symmetry-breaking in any of our data. Interestingly, our elastoresistivity measurements, which are in full agreement with published results, exhibit a Curie-Weiss divergence, which we however attribute to a volume and not to a symmetry-breaking effect. Finally, clear evidence for thermal fluctuations is observed in our heat-capacity data, from which we estimate the HO correlation length.

قيم البحث

اقرأ أيضاً

Electronic nematicity is an important order in most iron-based superconductors, and FeSe represents a unique example, in which nematicity disentangles from spin ordering. It is commonly perceived that this property arises from strong electronic corre lation, which can not be properly captured by density functional theory (DFT). Here, we show that by properly considering the paramagnetic condition and carefully searching the energy landscape with symmetry-preconditioned wavefunctions, two nematic solutions stand out at either the DFT+$U$ or hybrid functional level, both of which are lower in energy than the symmetric solution. The ground-state band structure and Fermi surface can be well compared with the recent experimental results. Symmetry analysis assigns these two new solutions to the $B_{1g}$ and $E_u$ irreducible representations of the D$_{4h}$ point group. While the $B_{1g}$ Ising nematicity has been widely discussed in the context of vestigial stripe antiferromagnetic order, the two-component $E_u$ vector nematicity is beyond previous theoretical discussion. Distinct from the $B_{1g}$ order, the $E_u$ order features mixing of the Fe $d$-orbitals and inversion symmetry breaking, which lead to striking experimental consequences, e.g. missing of an electron pocket.
Very large anisotropies in transport quantities have been observed in the presence of very small in-plane structural anisotropy in many strongly correlated electron materials. By studying the two-dimensional Hubbard model with dynamical-mean-field th eory for clusters, we show that such large anisotropies can be induced without static stripe order if the interaction is large enough to yield a Mott transition. Anisotropy decreases at large frequency. The maximum effect on conductivity anisotropy occurs in the underdoped regime, as observed in high temperature superconductors.
Electronic nematic phases have been proposed to occur in various correlated electron systems and were recently claimed to have been detected in scanning tunneling microscopy (STM) conductance maps of the pseudogap states of the cuprate high-temperatu re superconductor Bi2Sr2CaCu2O8+x (Bi-2212). We investigate the influence of anisotropic STM tip structures on such measurements and establish, with a model calculation, the presence of a tunneling interference effect within an STM junction that induces energy-dependent symmetry-breaking features in the conductance maps. We experimentally confirm this phenomenon on different correlated electron systems, including measurements in the pseudogap state of Bi-2212, showing that the apparent nematic behavior of the imaged crystal lattice is likely not due to nematic order but is related to how a realistic STM tip probes the band structure of a material. We further establish that this interference effect can be used as a sensitive probe of changes in the momentum structure of the samples quasiparticles as a function of energy.
237 - Lei Chen , Haoyu Hu , Qimiao Si 2020
Strongly correlated quantum matter exhibits a rich variety of remarkable properties, but the organizing principles that underlie the behavior remain to be established. Graphene heterostructures, which can host narrow moire electron bands that amplify the correlation effect, represent a new setting to make progress on this overarching issue. In such correlated moire systems, an insulating state is a prominent feature of the phase diagram and may hold the key to understanding the basic physics. Here we advance the notion of a fragile insulator, a correlation-driven insulating state that is on the verge of a delocalization transition into a bad metal. Using a realistic multiorbital Hubbard model as a prototype for narrow band moire systems, we realize such a fragile insulator and demonstrate a nematic order in this state as well as in the nearby bad metal regime. Our results are consistent with the observed electronic anisotropy in the graphene moire systems and provide a natural understanding of what happens when the insulator is tuned into a bad metal. We propose the fragile insulator and the accompanying bad metal as competing states at integer fillings that analogously anchor the overall phase diagram of the correlated moire systems and beyond.
93 - J. Li , D. Zhao , Y. P. Wu 2016
In correlated electrons system, quantum melting of electronic crystalline phase often gives rise to many novel electronic phases. In cuprates superconductors, melting the Mott insulating phase with carrier doping leads to a quantum version of liquid crystal phase, the electronic nematicity, which breaks the rotational symmetry and exhibits a tight twist with high-temperature superconductivity. Recently, the electronic nematicity has also been observed in Fe-based superconductors. However, whether it shares a similar scenario with its cuprates counterpart is still elusive. Here, by measuring nuclear magnetic resonance in CsFe2As2, a prototypical Fe-based superconductor perceived to have evolved from a Mott insulating phase at 3d5 configuration, we report anisotropic quadruple broadening effect as a direct result of local rotational symmetry breaking. For the first time, clear connection between the Mott insulating phase and the electronic nematicity can be established and generalized to the Fe-based superconductors. This finding would promote a universal understanding on electronic nematicity and its relation with high-temperature superconductivity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا