ﻻ يوجد ملخص باللغة العربية
The integration of communication networks and the Internet of Things (IoT) in Industrial Control Systems (ICSs) increases their vulnerability towards cyber-attacks, causing devastating outcomes. Traditional Intrusion Detection Systems (IDSs), which are mainly developed to support Information Technology (IT) systems, count vastly on predefined models and are trained mostly on specific cyber-attacks. Besides, most IDSs do not consider the imbalanced nature of ICS datasets, thereby suffering from low accuracy and high false positive on real datasets. In this paper, we propose a deep representation learning model to construct new balanced representations of the imbalanced dataset. The new representations are fed into an ensemble deep learning attack detection model specifically designed for an ICS environment. The proposed attack detection model leverages Deep Neural Network (DNN) and Decision Tree (DT) classifiers to detect cyber-attacks from the new representations. The performance of the proposed model is evaluated based on 10-fold cross-validation on two real ICS datasets. The results show that the proposed method outperforms conventional classifiers, including Random Forest (RF), DNN, and AdaBoost, as well as recent existing models in the literature. The proposed approach is a generalized technique, which can be implemented in existing ICS infrastructures with minimum changes.
Existing coordinated cyber-attack detection methods have low detection accuracy and efficiency and poor generalization ability due to difficulties dealing with unbalanced attack data samples, high data dimensionality, and noisy data sets. This paper
Defending computer networks from cyber attack requires coordinating actions across multiple nodes based on imperfect indicators of compromise while minimizing disruptions to network operations. Advanced attacks can progress with few observable signal
Modern smart grid systems are heavily dependent on Information and Communication Technology, and this dependency makes them prone to cyberattacks. The occurrence of a cyberattack has increased in recent years resulting in substantial damage to power
We consider adversarial machine learning based attacks on power allocation where the base station (BS) allocates its transmit power to multiple orthogonal subcarriers by using a deep neural network (DNN) to serve multiple user equipments (UEs). The D
In this paper a novel approach to co-design controller and attack detector for nonlinear cyber-physical systems affected by false data injection (FDI) attack is proposed. We augment the model predictive controller with an additional constraint requir