ﻻ يوجد ملخص باللغة العربية
Modern smart grid systems are heavily dependent on Information and Communication Technology, and this dependency makes them prone to cyberattacks. The occurrence of a cyberattack has increased in recent years resulting in substantial damage to power systems. For a reliable and stable operation, cyber protection, control, and detection techniques are becoming essential. Automated detection of cyberattacks with high accuracy is a challenge. To address this, we propose a two-layer hierarchical machine learning model having an accuracy of 95.44 % to improve the detection of cyberattacks. The first layer of the model is used to distinguish between the two modes of operation (normal state or cyberattack). The second layer is used to classify the state into different types of cyberattacks. The layered approach provides an opportunity for the model to focus its training on the targeted task of the layer, resulting in improvement in model accuracy. To validate the effectiveness of the proposed model, we compared its performance against other recent cyber attack detection models proposed in the literature.
False Data Injection (FDI) attacks are a common form of Cyber-attack targetting smart grids. Detection of stealthy FDI attacks is impossible by the current bad data detection systems. Machine learning is one of the alternative methods proposed to det
Existing coordinated cyber-attack detection methods have low detection accuracy and efficiency and poor generalization ability due to difficulties dealing with unbalanced attack data samples, high data dimensionality, and noisy data sets. This paper
Due to the advances in computing and sensing, deep learning (DL) has widely been applied in smart energy systems (SESs). These DL-based solutions have proved their potentials in improving the effectiveness and adaptiveness of the control systems. How
Modern electric power grid, known as the Smart Grid, has fast transformed the isolated and centrally controlled power system to a fast and massively connected cyber-physical system that benefits from the revolutions happening in the communications an
In this paper a novel approach to co-design controller and attack detector for nonlinear cyber-physical systems affected by false data injection (FDI) attack is proposed. We augment the model predictive controller with an additional constraint requir