ﻻ يوجد ملخص باللغة العربية
The goal of this thesis is to design a learning model predictive controller (LMPC) that allows multiple agents to race competitively on a predefined race track in real-time. This thesis addresses two major shortcomings in the already existing single-agent formulation. Previously, the agent determines a locally optimal trajectory but does not explore the state space, which may be necessary for overtaking maneuvers. Additionally, obstacle avoidance for LMPC has been achieved in the past by using a non-convex terminal set, which increases the complexity for determining a solution to the optimization problem. The proposed algorithm for multi-agent racing explores the state space by executing the LMPC for multiple different initializations, which yields a richer terminal safe set. Furthermore, a new method for selecting states in the terminal set is developed, which keeps the convexity for the terminal safe set and allows for taking suboptimal states.
In this paper, we introduce an actor-critic algorithm called Deep Value Model Predictive Control (DMPC), which combines model-based trajectory optimization with value function estimation. The DMPC actor is a Model Predictive Control (MPC) optimizer w
Despite the rich theoretical foundation of model-based deep reinforcement learning (RL) agents, their effectiveness in real-world robotics-applications is less studied and understood. In this paper, we, therefore, investigate how such agents generali
In this paper we present a Learning Model Predictive Control (LMPC) strategy for linear and nonlinear time optimal control problems. Our work builds on existing LMPC methodologies and it guarantees finite time convergence properties for the closed-lo
Accurately modeling robot dynamics is crucial to safe and efficient motion control. In this paper, we develop and apply an iterative learning semi-parametric model, with a neural network, to the task of autonomous racing with a Model Predictive Contr
Model predictive control (MPC) is an effective method for controlling robotic systems, particularly autonomous aerial vehicles such as quadcopters. However, application of MPC can be computationally demanding, and typically requires estimating the st