ﻻ يوجد ملخص باللغة العربية
Taylors law quantifies the scaling properties of the fluctuations of the number of innovations occurring in open systems. Urn based modelling schemes have already proven to be effective in modelling this complex behaviour. Here, we present analytical estimations of Taylors law exponents in such models, by leveraging on their representation in terms of triangular urn models. We also highlight the correspondence of these models with Poisson-Dirichlet processes and demonstrate how a non-trivial Taylors law exponent is a kind of universal feature in systems related to human activities. We base this result on the analysis of four collections of data generated by human activity: (i) written language (from a Gutenberg corpus); (ii) a n online music website (Last.fm); (iii) Twitter hashtags; (iv) a on-line collaborative tagging system (Del.icio.us). While Taylors law observed in the last two datasets agrees with the plain model predictions, we need to introduce a generalization to fully characterize the behaviour of the first two datasets, where temporal correlations are possibly more relevant. We suggest that Taylors law is a fundamental complement to Zipfs and Heaps laws in unveiling the complex dynamical processes underlying the evolution of systems featuring innovation.
The sparsity and compressibility of finite-dimensional signals are of great interest in fields such as compressed sensing. The notion of compressibility is also extended to infinite sequences of i.i.d. or ergodic random variables based on the observe
We propose a simple model where the innovation rate of a technological domain depends on the innovation rate of the technological domains it relies on. Using data on US patents from 1836 to 2017, we make out-of-sample predictions and find that the pr
In this paper, we propose a spatially constrained clustering problem belonging to the family of p-regions problems. Our formulation is motivated by the recent developments of economic complexity on the evolution of the economic output through key int
It has been shown recently that a specific class of path-dependent stochastic processes, which reduce their sample space as they unfold, lead to exact scaling laws in frequency and rank distributions. Such Sample Space Reducing processes (SSRP) offer
We generalize the classical Bass model of innovation diffusion to include a new class of agents --- Luddites --- that oppose the spread of innovation. Our model also incorporates ignorants, susceptibles, and adopters. When an ignorant and a susceptib