ترغب بنشر مسار تعليمي؟ اضغط هنا

Universal Adversarial Attacks with Natural Triggers for Text Classification

200   0   0.0 ( 0 )
 نشر من قبل Liwei Song
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent work has demonstrated the vulnerability of modern text classifiers to universal adversarial attacks, which are input-agnostic sequences of words added to text processed by classifiers. Despite being successful, the word sequences produced in such attacks are often ungrammatical and can be easily distinguished from natural text. We develop adversarial attacks that appear closer to natural English phrases and yet confuse classification systems when added to benign inputs. We leverage an adversarially regularized autoencoder (ARAE) to generate triggers and propose a gradient-based search that aims to maximize the downstream classifiers prediction loss. Our attacks effectively reduce model accuracy on classification tasks while being less identifiable than prior models as per automatic detection metrics and human-subject studies. Our aim is to demonstrate that adversarial attacks can be made harder to detect than previously thought and to enable the development of appropriate defenses.



قيم البحث

اقرأ أيضاً

There are now many adversarial attacks for natural language processing systems. Of these, a vast majority achieve success by modifying individual document tokens, which we call here a textit{token-modification} attack. Each token-modification attack is defined by a specific combination of fundamental textit{components}, such as a constraint on the adversary or a particular search algorithm. Motivated by this observation, we survey existing token-modification attacks and extract the components of each. We use an attack-independent framework to structure our survey which results in an effective categorisation of the field and an easy comparison of components. We hope this survey will guide new researchers to this field and spark further research into the individual attack components.
We find that images contain intrinsic structure that enables the reversal of many adversarial attacks. Attack vectors cause not only image classifiers to fail, but also collaterally disrupt incidental structure in the image. We demonstrate that modif ying the attacked image to restore the natural structure will reverse many types of attacks, providing a defense. Experiments demonstrate significantly improved robustness for several state-of-the-art models across the CIFAR-10, CIFAR-100, SVHN, and ImageNet datasets. Our results show that our defense is still effective even if the attacker is aware of the defense mechanism. Since our defense is deployed during inference instead of training, it is compatible with pre-trained networks as well as most other defenses. Our results suggest deep networks are vulnerable to adversarial examples partly because their representations do not enforce the natural structure of images.
Adversarial attacks against machine learning models have threatened various real-world applications such as spam filtering and sentiment analysis. In this paper, we propose a novel framework, learning to DIScriminate Perturbations (DISP), to identify and adjust malicious perturbations, thereby blocking adversarial attacks for text classification models. To identify adversarial attacks, a perturbation discriminator validates how likely a token in the text is perturbed and provides a set of potential perturbations. For each potential perturbation, an embedding estimator learns to restore the embedding of the original word based on the context and a replacement token is chosen based on approximate kNN search. DISP can block adversarial attacks for any NLP model without modifying the model structure or training procedure. Extensive experiments on two benchmark datasets demonstrate that DISP significantly outperforms baseline methods in blocking adversarial attacks for text classification. In addition, in-depth analysis shows the robustness of DISP across different situations.
Deep neural networks (DNNs) are known to be vulnerable to adversarial images, while their robustness in text classification is rarely studied. Several lines of text attack methods have been proposed in the literature, including character-level, word- level, and sentence-level attacks. However, it is still a challenge to minimize the number of word changes necessary to induce misclassification, while simultaneously ensuring lexical correctness, syntactic soundness, and semantic similarity. In this paper, we propose a Bigram and Unigram based adaptive Semantic Preservation Optimization (BU-SPO) method to examine the vulnerability of deep models. Our method has four major merits. Firstly, we propose to attack text documents not only at the unigram word level but also at the bigram level which better keeps semantics and avoids producing meaningless outputs. Secondly, we propose a hybrid method to replace the input words with options among both their synonyms candidates and sememe candidates, which greatly enriches the potential substitutions compared to only using synonyms. Thirdly, we design an optimization algorithm, i.e., Semantic Preservation Optimization (SPO), to determine the priority of word replacements, aiming to reduce the modification cost. Finally, we further improve the SPO with a semantic Filter (named SPOF) to find the adversarial example with the highest semantic similarity. We evaluate the effectiveness of our BU-SPO and BU-SPOF on IMDB, AGs News, and Yahoo! Answers text datasets by attacking four popular DNNs models. Results show that our methods achieve the highest attack success rates and semantics rates by changing the smallest number of words compared with existing methods.
Texts convey sophisticated knowledge. However, texts also convey sensitive information. Despite the success of general-purpose language models and domain-specific mechanisms with differential privacy (DP), existing text sanitization mechanisms still provide low utility, as cursed by the high-dimensional text representation. The companion issue of utilizing sanitized texts for downstream analytics is also under-explored. This paper takes a direct approach to text sanitization. Our insight is to consider both sensitivity and similarity via our new local DP notion. The sanitized texts also contribute to our sanitization-aware pretraining and fine-tuning, enabling privacy-preserving natural language processing over the BERT language model with promising utility. Surprisingly, the high utility does not boost up the success rate of inference attacks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا