ترغب بنشر مسار تعليمي؟ اضغط هنا

STARC: Structured Annotations for Reading Comprehension

66   0   0.0 ( 0 )
 نشر من قبل Yevgeni Berzak
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We present STARC (Structured Annotations for Reading Comprehension), a new annotation framework for assessing reading comprehension with multiple choice questions. Our framework introduces a principled structure for the answer choices and ties them to textual span annotations. The framework is implemented in OneStopQA, a new high-quality dataset for evaluation and analysis of reading comprehension in English. We use this dataset to demonstrate that STARC can be leveraged for a key new application for the development of SAT-like reading comprehension materials: automatic annotation quality probing via span ablation experiments. We further show that it enables in-depth analyses and comparisons between machine and human reading comprehension behavior, including error distributions and guessing ability. Our experiments also reveal that the standard multiple choice dataset in NLP, RACE, is limited in its ability to measure reading comprehension. 47% of its questions can be guessed by machines without accessing the passage, and 18% are unanimously judged by humans as not having a unique correct answer. OneStopQA provides an alternative test set for reading comprehension which alleviates these shortcomings and has a substantially higher human ceiling performance.

قيم البحث

اقرأ أيضاً

242 - Yuan Miao , Gongqi Lin , Yidan Hu 2019
Reading comprehension is an important ability of human intelligence. Literacy and numeracy are two most essential foundation for people to succeed at study, at work and in life. Reading comprehension ability is a core component of literacy. In most o f the education systems, developing reading comprehension ability is compulsory in the curriculum from year one to year 12. It is an indispensable ability in the dissemination of knowledge. With the emerging artificial intelligence, computers start to be able to read and understand like people in some context. They can even read better than human beings for some tasks, but have little clue in other tasks. It will be very beneficial if we can identify the levels of machine comprehension ability, which will direct us on the further improvement. Turing test is a well-known test of the difference between computer intelligence and human intelligence. In order to be able to compare the difference between people reading and machines reading, we proposed a test called (reading) Comprehension Ability Test (CAT).CAT is similar to Turing test, passing of which means we cannot differentiate people from algorithms in term of their comprehension ability. CAT has multiple levels showing the different abilities in reading comprehension, from identifying basic facts, performing inference, to understanding the intent and sentiment.
102 - Hai Wang , Dian Yu , Kai Sun 2019
Remarkable success has been achieved in the last few years on some limited machine reading comprehension (MRC) tasks. However, it is still difficult to interpret the predictions of existing MRC models. In this paper, we focus on extracting evidence s entences that can explain or support the answers of multiple-choice MRC tasks, where the majority of answer options cannot be directly extracted from reference documents. Due to the lack of ground truth evidence sentence labels in most cases, we apply distant supervision to generate imperfect labels and then use them to train an evidence sentence extractor. To denoise the noisy labels, we apply a recently proposed deep probabilistic logic learning framework to incorporate both sentence-level and cross-sentence linguistic indicators for indirect supervision. We feed the extracted evidence sentences into existing MRC models and evaluate the end-to-end performance on three challenging multiple-choice MRC datasets: MultiRC, RACE, and DREAM, achieving comparable or better performance than the same models that take as input the full reference document. To the best of our knowledge, this is the first work extracting evidence sentences for multiple-choice MRC.
In this paper, we focus on unsupervised domain adaptation for Machine Reading Comprehension (MRC), where the source domain has a large amount of labeled data, while only unlabeled passages are available in the target domain. To this end, we propose a n Adversarial Domain Adaptation framework (AdaMRC), where ($i$) pseudo questions are first generated for unlabeled passages in the target domain, and then ($ii$) a domain classifier is incorporated into an MRC model to predict which domain a given passage-question pair comes from. The classifier and the passage-question encoder are jointly trained using adversarial learning to enforce domain-invariant representation learning. Comprehensive evaluations demonstrate that our approach ($i$) is generalizable to different MRC models and datasets, ($ii$) can be combined with pre-trained large-scale language models (such as ELMo and BERT), and ($iii$) can be extended to semi-supervised learning.
95 - Robin Jia , Percy Liang 2017
Standard accuracy metrics indicate that reading comprehension systems are making rapid progress, but the extent to which these systems truly understand language remains unclear. To reward systems with real language understanding abilities, we propose an adversarial evaluation scheme for the Stanford Question Answering Dataset (SQuAD). Our method tests whether systems can answer questions about paragraphs that contain adversarially inserted sentences, which are automatically generated to distract computer systems without changing the correct answer or misleading humans. In this adversarial setting, the accuracy of sixteen published models drops from an average of $75%$ F1 score to $36%$; when the adversary is allowed to add ungrammatical sequences of words, average accuracy on four models decreases further to $7%$. We hope our insights will motivate the development of new models that understand language more precisely.
Multi-choice Machine Reading Comprehension (MRC) as a challenge requires model to select the most appropriate answer from a set of candidates given passage and question. Most of the existing researches focus on the modeling of the task datasets witho ut explicitly referring to external fine-grained knowledge sources, which is supposed to greatly make up the deficiency of the given passage. Thus we propose a novel reference-based knowledge enhancement model called Reference Knowledgeable Network (RekNet), which refines critical information from the passage and quote explicit knowledge in necessity. In detail, RekNet refines fine-grained critical information and defines it as Reference Span, then quotes explicit knowledge quadruples by the co-occurrence information of Reference Span and candidates. The proposed RekNet is evaluated on three multi-choice MRC benchmarks: RACE, DREAM and Cosmos QA, which shows consistent and remarkable performance improvement with observable statistical significance level over strong baselines.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا