ترغب بنشر مسار تعليمي؟ اضغط هنا

Adversarial Domain Adaptation for Machine Reading Comprehension

158   0   0.0 ( 0 )
 نشر من قبل Zhe Gan
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we focus on unsupervised domain adaptation for Machine Reading Comprehension (MRC), where the source domain has a large amount of labeled data, while only unlabeled passages are available in the target domain. To this end, we propose an Adversarial Domain Adaptation framework (AdaMRC), where ($i$) pseudo questions are first generated for unlabeled passages in the target domain, and then ($ii$) a domain classifier is incorporated into an MRC model to predict which domain a given passage-question pair comes from. The classifier and the passage-question encoder are jointly trained using adversarial learning to enforce domain-invariant representation learning. Comprehensive evaluations demonstrate that our approach ($i$) is generalizable to different MRC models and datasets, ($ii$) can be combined with pre-trained large-scale language models (such as ELMo and BERT), and ($iii$) can be extended to semi-supervised learning.

قيم البحث

اقرأ أيضاً

This study tackles unsupervised domain adaptation of reading comprehension (UDARC). Reading comprehension (RC) is a task to learn the capability for question answering with textual sources. State-of-the-art models on RC still do not have general ling uistic intelligence; i.e., their accuracy worsens for out-domain datasets that are not used in the training. We hypothesize that this discrepancy is caused by a lack of the language modeling (LM) capability for the out-domain. The UDARC task allows models to use supervised RC training data in the source domain and only unlabeled passages in the target domain. To solve the UDARC problem, we provide two domain adaptation models. The first one learns the out-domain LM and in-domain RC task sequentially. The second one is the proposed model that uses a multi-task learning approach of LM and RC. The models can retain both the RC capability acquired from the supervised data in the source domain and the LM capability from the unlabeled data in the target domain. We evaluated the models on UDARC with five datasets in different domains. The models outperformed the model without domain adaptation. In particular, the proposed model yielded an improvement of 4.3/4.2 points in EM/F1 in an unseen biomedical domain.
In this paper, we introduce Adversarial-and-attention Network (A3Net) for Machine Reading Comprehension. This model extends existing approaches from two perspectives. First, adversarial training is applied to several target variables within the model , rather than only to the inputs or embeddings. We control the norm of adversarial perturbations according to the norm of original target variables, so that we can jointly add perturbations to several target variables during training. As an effective regularization method, adversarial training improves robustness and generalization of our model. Second, we propose a multi-layer attention network utilizing three kinds of high-efficiency attention mechanisms. Multi-layer attention conducts interaction between question and passage within each layer, which contributes to reasonable representation and understanding of the model. Combining these two contributions, we enhance the diversity of dataset and the information extracting ability of the model at the same time. Meanwhile, we construct A3Net for the WebQA dataset. Results show that our model outperforms the state-of-the-art models (improving Fuzzy Score from 73.50% to 77.0%).
Adversarial training (AT) as a regularization method has proved its effectiveness on various tasks. Though there are successful applications of AT on some NLP tasks, the distinguishing characteristics of NLP tasks have not been exploited. In this pap er, we aim to apply AT on machine reading comprehension (MRC) tasks. Furthermore, we adapt AT for MRC tasks by proposing a novel adversarial training method called PQAT that perturbs the embedding matrix instead of word vectors. To differentiate the roles of passages and questions, PQAT uses additional virtual P/Q-embedding matrices to gather the global perturbations of words from passages and questions separately. We test the method on a wide range of MRC tasks, including span-based extractive RC and multiple-choice RC. The results show that adversarial training is effective universally, and PQAT further improves the performance.
95 - Robin Jia , Percy Liang 2017
Standard accuracy metrics indicate that reading comprehension systems are making rapid progress, but the extent to which these systems truly understand language remains unclear. To reward systems with real language understanding abilities, we propose an adversarial evaluation scheme for the Stanford Question Answering Dataset (SQuAD). Our method tests whether systems can answer questions about paragraphs that contain adversarially inserted sentences, which are automatically generated to distract computer systems without changing the correct answer or misleading humans. In this adversarial setting, the accuracy of sixteen published models drops from an average of $75%$ F1 score to $36%$; when the adversary is allowed to add ungrammatical sequences of words, average accuracy on four models decreases further to $7%$. We hope our insights will motivate the development of new models that understand language more precisely.
102 - Hai Wang , Dian Yu , Kai Sun 2019
Remarkable success has been achieved in the last few years on some limited machine reading comprehension (MRC) tasks. However, it is still difficult to interpret the predictions of existing MRC models. In this paper, we focus on extracting evidence s entences that can explain or support the answers of multiple-choice MRC tasks, where the majority of answer options cannot be directly extracted from reference documents. Due to the lack of ground truth evidence sentence labels in most cases, we apply distant supervision to generate imperfect labels and then use them to train an evidence sentence extractor. To denoise the noisy labels, we apply a recently proposed deep probabilistic logic learning framework to incorporate both sentence-level and cross-sentence linguistic indicators for indirect supervision. We feed the extracted evidence sentences into existing MRC models and evaluate the end-to-end performance on three challenging multiple-choice MRC datasets: MultiRC, RACE, and DREAM, achieving comparable or better performance than the same models that take as input the full reference document. To the best of our knowledge, this is the first work extracting evidence sentences for multiple-choice MRC.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا