ﻻ يوجد ملخص باللغة العربية
Determining the mechanisms that drive the evolution of protoplanetary disks is a necessary step to understand how planets form. Here we measured the mass accretion rate for young stellar objects at age >5 Myr, a critical test for the current models of disk evolution. We present the analysis of the spectra of 36 targets in the ~5-10 Myr old Upper Scorpius region for which disk masses were measured with ALMA. We find that the mass accretion rates in this sample of old but still survived disks are similarly high as those of the younger (<3 Myr old) star-forming regions of Lupus and Cha I, when considering the dependence on stellar and disk mass. In particular, several disks show high mass accretion rates >10^-9 Msun/yr while having low disk masses. Furthermore, the median values of the measured mass accretion rates in the disk mass ranges where our sample is complete at a level ~60-80% are compatible in these three regions. At the same time, the spread of mass accretion rates at any given disk mass is still >0.9 dex even at age>5 Myr. These results are in contrast with simple models of viscous evolution, which would predict that the values of the mass accretion rate diminish with time, and a tighter correlation with disk mass at age>5 Myr. Similarly, simple models of internal photoevaporation cannot reproduce the observed mass accretion rates, while external photoevaporation might explain the low disk masses and high accretion rates. A partial possible solution to the discrepancy with the viscous models is that the gas-to-dust ratio of the disks at >5 Myr is significantly different and higher than the canonical 100, as suggested by some dust and gas disk evolution models. The results shown here require the presence of several inter-playing processes, such as detailed dust evolution, external photoevaporation and possibly MHD winds, to explain the secular evolution of protoplanetary disks.
We present the analysis of 34 new VLT/X-Shooter spectra of young stellar objects in the Chamaeleon I star forming region, together with four more spectra of stars in Taurus and two in Chamaeleon II. The broad wavelength coverage and accurate flux cal
The dependence of the mass accretion rate on the stellar properties is a key constraint for star formation and disk evolution studies. Here we present a study of a sample of stars in the Chamaeleon I star forming region carried out using the VLT/X-Sh
We investigate ongoing accretion activity in young stars in the TW Hydrae association (TWA, ~8-10 Myr), an ideal target to probe the final stages of disk accretion down to brown dwarf masses. Our sample comprises eleven TWA members with infrared exce
Studying the accretion process in very low-mass objects has important implications for understanding their formation mechanism. Many nearby late-M dwarfs that have previously been identified in the field are in fact young brown dwarf members of nearb
The Upper Scorpius OB association is the nearest region of recent massive star formation and thus an important benchmark for investigations concerning stellar evolution and planet formation timescales. We present nine EBs in Upper Scorpius, three of