ﻻ يوجد ملخص باللغة العربية
Studying the accretion process in very low-mass objects has important implications for understanding their formation mechanism. Many nearby late-M dwarfs that have previously been identified in the field are in fact young brown dwarf members of nearby young associations. Some of them are still accreting. They are therefore excellent targets for further studies of the accretion process in the very low-mass regime at different stages. We aim to search for accreting young brown dwarf candidates in a sample of 85 nearby late-M dwarfs. Using photometric data from DENIS, 2MASS, and WISE, we constructed the spectral energy distribution of the late-M dwarfs based on BT-Settl models to detect infrared excesses. We then searched for lithium and H$alpha$ emission in candidates that exhibit infrared excesses to confirm their youth and the presence of accretion. Among the 85 late-M dwarfs, only DENIS-P J1538317$-$103850 (M5.5) shows strong infrared excesses in WISE bands. The detection of lithium absorption in the M5.5 dwarf and its Gaia trigonometric parallax indicate an age of $sim$1 Myr and a mass of 47 $M_{rm J}$. The H$alpha$ emission line in the brown dwarf shows significant variability that indicates sporadic accretion. This 1 Myr-old brown dwarf also exhibits intense accretion bursts with accretion rates of up to $10^{-7.9}$$M_{odot}$ yr$^{-1}$. Our detection of sporadic accretion in one of the youngest brown dwarfs might imply that sporadic accretion at early stages could play an important role in the formation of brown dwarfs. Very low-mass cores would not be able to accrete enough material to become stars, and thus they end up as brown dwarfs.
We report the discovery of the youngest brown dwarf with a disk at 102 pc from the Sun, WISEA~J120037.79-784508.3 (W1200-7845), via the Disk Detective citizen science project. We establish that W1200-7845 is located in the 3.7$substack{+4.6 -1.4}$ M
Determining the mechanisms that drive the evolution of protoplanetary disks is a necessary step to understand how planets form. Here we measured the mass accretion rate for young stellar objects at age >5 Myr, a critical test for the current models o
We present the discovery of only the third brown dwarf known to eclipse a non-accreting white dwarf. Gaia parallax information and multi-colour photometry confirm that the white dwarf is cool (9950$pm$150K) and has a low mass (0.45$pm$0.05~MSun), and
Hot Jupiters are giant Jupiter-like exoplanets that orbit 100x closer to their host stars than Jupiter does to the Sun. These planets presumably form in the outer part of the primordial disc from which both the central star and surrounding planets ar
We present follow-up $Spitzer$ observations at 3.6$mu$m (ch1) and 4.5$mu$m (ch2) of CWISEP J144606.62$-$231717.8, one of the coldest known brown dwarfs in the solar neighborhood. This object was found by mining the Wide-field Infrared Survey Explorer