ﻻ يوجد ملخص باللغة العربية
Gravitational wave astronomy has recently emerged as a new way to study our Universe. In this work, we survey the potential of gravitational wave interferometers to detect macroscopic astrophysical objects comprising the dark matter. Starting from the well-known case of clumps we expand to cosmic strings and domain walls. We also consider the sensitivity to measure the dark matter power spectrum on small scales. Our analysis is based on the fact that these objects, when traversing the vicinity of the detector, will exert a gravitational pull on each node of the interferometer, in turn leading to a differential acceleration and corresponding Doppler signal, that can be measured. As a prototypical example of a gravitational wave interferometer, we consider signals induced at LISA. We further extrapolate our results to gravitational wave experiments sensitive in other frequency bands, including ground-based interferometers, such as LIGO, and pulsar timing arrays, such as SKA. Assuming moderate sensitivity improvements beyond the current designs, clumps, strings and domain walls may be within reach of these experiments.
Primordial black holes (PBHs) have long been suggested as a candidate for making up some or all of the dark matter in the Universe. Most of the theoretically possible mass range for PBH dark matter has been ruled out with various null observations of
Cosmic string networks offer one of the best prospects for detection of cosmological gravitational waves (GWs). The combined incoherent GW emission of a large number of string loops leads to a stochastic GW background (SGWB), which encodes the proper
Dark matter may induce apparent temporal variations in the physical constants, including the electromagnetic fine-structure constant and fermion masses. In particular, a coherently oscillating classical dark-matter field may induce apparent oscillati
We calculate the accurate spectrum of the stochastic gravitational wave background from U(1) gauge fields produced by axion dark matter. The explosive production of gauge fields soon invalidates the applicability of the linear analysis and one needs
Dark Matter (DM) annihilation and decay during the Dark Ages can affect the cosmic ionization history and leave imprints in the Cosmic Microwave Background (CMB) anisotropy spectra. CMB polarization anisotropy can be sensitive to such energy injectio