ﻻ يوجد ملخص باللغة العربية
Dark matter may induce apparent temporal variations in the physical constants, including the electromagnetic fine-structure constant and fermion masses. In particular, a coherently oscillating classical dark-matter field may induce apparent oscillations of physical constants in time, while the passage of macroscopic dark-matter objects (such as topological defects) may induce apparent transient variations in the physical constants. In this paper, we point out several new signatures of the aforementioned types of dark matter that can arise due to the geometric asymmetry created by the beam-splitter in a two-arm laser interferometer. These new signatures include dark-matter-induced time-varying size changes of a freely-suspended beam-splitter and associated time-varying shifts of the main reflecting surface of the beam-splitter that splits and recombines the laser beam, as well as time-varying refractive-index changes in the freely-suspended beam-splitter and time-varying size changes of freely-suspended arm mirrors. We demonstrate that existing ground-based experiments already have sufficient sensitivity to probe extensive regions of unconstrained parameter space in models involving oscillating scalar dark-matter fields and domain walls composed of scalar fields. In the case of oscillating dark-matter fields, Michelson interferometers $-$ in particular, the GEO600 detector $-$ are especially sensitive. The sensitivity of Fabry-Perot-Michelson interferometers, including LIGO, VIRGO and KAGRA, to oscillating dark-matter fields can be significantly increased by making the thicknesses of the freely-suspended Fabry-Perot arm mirrors different in the two arms. We also discuss how small-scale Michelson interferometers, such as the Fermilab holometer, could be used to perform resonant narrowband searches for oscillating dark-matter fields with enhanced sensitivity to dark matter.
Gravitational wave astronomy has recently emerged as a new way to study our Universe. In this work, we survey the potential of gravitational wave interferometers to detect macroscopic astrophysical objects comprising the dark matter. Starting from th
This paper reviews some of the key enabling technologies for advanced and future laser interferometer gravitational wave detectors, which must combine test masses with the lowest possible optical and acoustic losses, with high stability lasers and va
Future ground-based gravitational-wave detectors are slated to detect black hole and neutron star collisions from the entire stellar history of the universe. To achieve the designed detector sensitivities, frequency noise from the laser source must b
Quantum fluctuations in the phase and amplitude quadratures of light set limitations on the sensitivity of modern optical instruments. The sensitivity of the interferometric gravitational wave detectors, such as the Advanced Laser Interferometer Grav
We show that gravitational wave detectors based on a type of atom interferometry are sensitive to ultralight scalar dark matter. Such dark matter can cause temporal oscillations in fundamental constants with a frequency set by the dark matter mass, a