ﻻ يوجد ملخص باللغة العربية
Negative energy wave phenomena may appear in shear flows in the presence of a wave decay mechanism and external energy supply. We study the appearance of negative energy surface waves in a plasma cylinder in the incompressible limit. The cylinder is surrounded by an axial magnetic field and by a plasma of different density. Considering flow inside and viscosity outside the flux tube, we derive dispersion relations, and obtain analytical solutions for the phase speed and growth rate (increment) of the waves. It is found that the critical speed shear for the occurrence of the dissipative instability associated with negative energy waves (NEWs) and the threshold of Kelvin--Helmholtz instability (KHI) depend on the axial wavelength. The critical shear for the appearance of sausage NEW is lowest for the longest axial wavelengths, while for kink waves the minimum value of the critical shear is reached for the axial wavelength comparable to the diameter of the cylinder. The range between the critical speed of the dissipative instability and the KHI threshold is shown to depend on the difference of the Alfv{e}n speeds inside and outside of the cylinder. For all axial wavenumbers, NEW appears for the shear flow speeds lower than the KHI threshold. It is easier to excite NEW in an underdense cylinder than in an overdense one. The negative energy surface waves can be effectively generated for azimuthal number $m=0$ with a large axial wave number and for higher modes ($m>0$) with a small axial wave number.
A possible solution to the unexplained high intensity hard x-ray (HXR) emission observable during solar flares was investigated via 3D fully relativistic, electromagnetic particle-in-cell (PIC) simulations with realistic ion to electron mass ratio. A
It has been suggested that the Z-mode instability driven by energetic electrons with a loss-cone type velocity distribution is one candidate process behind the continuum and zebra pattern of solar type-IV radio bursts. Both the temperature of backgro
We present estimates of the turbulent energy cascade rate, derived from a Hall-MHD third-order law. We compute the contribution from the Hall term and the MHD term to the energy flux. We use MMS data accumulated in the magnetosheath and the solar win
The processes of the coronal plasma heating and cooling were previously shown to significantly affect the dynamics of slow magnetoacoustic (MA) waves, causing amplification or attenuation, and also dispersion. However, the entropy mode is also excite
Previous works indicate that the frequency ratio of second and first harmonics of kink oscillations has tendency towards 3 in the case of prominence threads. We aim to study the magnetohydrodynamic oscillations of longitudinally inhomogeneous promine