ﻻ يوجد ملخص باللغة العربية
We present estimates of the turbulent energy cascade rate, derived from a Hall-MHD third-order law. We compute the contribution from the Hall term and the MHD term to the energy flux. We use MMS data accumulated in the magnetosheath and the solar wind, and compare the results with previously established simulation results. We find that in observation, the MHD contribution is dominant at inertial scales, as in the simulations, but the Hall term becomes significant in observations at larger scales than in the simulations. Possible reasons are offered for this unanticipated result.
The fundamental assumptions of the adiabatic theory do not apply in presence of sharp field gradients as well as in presence of well developed magnetohydrodynamic turbulence. For this reason in such conditions the magnetic moment $mu$ is no longer ex
A higher-order multiscale analysis of spatial anisotropy in inertial range magnetohydrodynamic turbulence is presented using measurements from the STEREO spacecraft in fast ambient solar wind. We show for the first time that, when measuring parallel
Non-thermal pickup ions (PUIs) are created in the solar wind (SW) by charge-exchange between SW ions (SWIs) and slow interstellar neutral atoms. It has long been theorized, but not directly observed, that PUIs should be preferentially heated at quasi
Mirror modes in collisionless high-temperature plasmas represent macroscopic high-temperature quasi-superconductors. We explicitly calculate the bouncing electron contribution to the ion-mode growth rate, diamagnetic surface current responsible for t
The nature of the turbulent energy transfer rate is studied using direct numerical simulations of weakly collisional space plasmas. This is done comparing results obtained from hybrid Vlasov-Maxwell simulations of colissionless plasmas, Hall-magnetoh