ترغب بنشر مسار تعليمي؟ اضغط هنا

A New Radio Catalogue for M83: Supernova Remnants and H II Regions

92   0   0.0 ( 0 )
 نشر من قبل Thomas Russell D
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a new catalogue of radio sources in the face-on spiral galaxy M83. Radio observations taken in 2011, 2015, and 2017 with the Australia Telescope Compact Array (ATCA) at 5.5 and 9 GHz have detected 270 radio sources. Although a small number of these sources are background extragalactic sources, most are either H II regions or supernova remnants (SNRs) within M83 itself. Three of the six historical supernovae are detected, as is the very young remnant that had been identified in a recent study, which is likely the result of a supernova that exploded in the last ~100 years but was missed. All of these objects are generally fading with time. Confusion limits our ability to measure the radio emission from a number of the SNRs in M83, but 64 were detected in unconfused regions, and these have the approximate power-law luminosity function which has been observed in other galaxies. The SNRs in M83 are systematically smaller in diameter and brighter than those that have been detected at radio wavelengths in M33. A number of the radio sources are coincident with X-ray sources in M83; most of these coincident sources turn out to be supernova remnants. Our dual frequency observations are among the most sensitive to date for a spiral galaxy outside the Local Group; despite this we were not able to place realistic constraints on the spectral indices, and as a result, it was not possible to search for supernova remnants based on their radio properties alone.


قيم البحث

اقرأ أيضاً

We search for far-infrared (FIR) counterparts of known supernova remnants (SNRs) in the Galactic plane (360 degrees in longitude and b = +/- 1 deg ) at 70 - 500 micron with Herschel. We detect dust signatures in 39 SNRs out of 190, made up of 13 core -collapse supernovae (CCSNe), including 4 Pulsar Wind Nebulae (PWNe), and 2 Type Ia SNe. A further 24 FIR detected SNRs have unknown types. We confirm the FIR detection of ejecta dust within G350.1-0.3, adding to the known sample of ~10 SNRs containing ejecta dust. We discover dust features at the location of a radio core at the centre of G351.2+0.1, indicating FIR emission coincident with a possible Crab-like compact object, with dust temperature and mass of Td = 45.8 K and Md = 0.18 solar mass, similar to the PWN G54.1+0.3. We show that the detection rate is higher among young SNRs. We produce dust temperature maps of 11 SNRs and mass maps of those with distance estimates, finding dust at temperatures 15 < Td < 40 K. If the dust is heated by shock interactions the shocked gas must be relatively cool and/or have a low density to explain the observed low grain temperatures.
A catalogue of 239 ultra-compact HII regions (UCHIIs) found in the CORNISH survey at 5 GHz and 1.5 resolution in the region $10^{circ} < l < 65^{circ}, ~|b| < 1^{circ}$ is presented. This is the largest complete and well-selected sample of UCHIIs to date and provides the opportunity to explore the global and individual properties of this key state in massive star formation at multiple wavelengths. The nature of the candidates was validated, based on observational properties and calculated spectral indices, and the analysis is presented in this work. The physical sizes, luminosities and other physical properties were computed by utilising literature distances or calculating the distances whenever a value was not available. The near- and mid-infrared extended source fluxes were measured and the extinctions towards the UCHIIs were computed. The new results were combined with available data at longer wavelengths and the spectral energy distributions (SEDs) were reconstructed for 177 UCHIIs. The bolometric luminosities obtained from SED fitting are presented. By comparing the radio flux densities to previous observational epochs, we find about 5% of the sources appear to be time variable. This first high-resolution area survey of the Galactic plane shows that the total number of UCHIIs in the Galaxy is ~ 750 - a factor of 3-4 fewer than found in previous large area radio surveys. It will form the basis for future tests of models of massive star formation.
394 - Swagat Ranjan Das 2017
Aims. We present a multiwavelength study of two southern Galactic H II regions G346.056-0.021 and G346.077-0.056 which are located at a distance of 10.9 kpc. The distribution of ionized gas, cold and warm dust and the stellar population associated wi th the two H II regions are studied in detail using measurements at near-infrared, mid-infrared, far-infrared, submillimeter and radio wavelengths. Methods. The radio continuum maps at 1280 and 610 MHz were obtained using the Giant Metrewave Radio Telescope to probe the ionized gas. The dust temperature, column density and dust emissivity maps were generated by using modified blackbody fits in the far-infrared wavelength range 160 - 500 {mu}m. Various near- and mid-infrared colour and magnitude criteria were adopted to identify candidate ionizing star(s) and the population of young stellar objects in the associated field. Results. The radio maps reveal the presence diffuse ionized emission displaying distinct cometary morphologies. The 1280 MHz flux densities translate to ZAMS spectral types in the range O7.5V - O7V and O8.5V - O8V for the ionizing stars of G346.056-0.021 and G346.077-0.056, respectively. A few promising candidate ionizing star(s) are identified using near-infrared photometric data. The column density map shows the presence of a large, dense dust clump enveloping G346.077-0.056. The dust temperature map shows peaks towards the two H II regions. The submillimetre image shows the presence of two additional clumps one being associated with G346.056-0.021. The masses of the clumps are estimated to range between {sim} 1400 to 15250 M{sun}. Based on simple analytic calculations and the correlation seen between the ionized gas distribution and the local density structure, the observed cometary morphology in the radio maps is better explained invoking the champagne-flow model.
The study of supernova remnants (SNRs) is fundamental to understanding the chemical enrichment and magnetism in galaxies, including our own Milky Way. In an effort to understand the connection between the morphology of SNRs and the Galactic magnetic field (GMF), we have examined the radio images of all known SNRs in our Galaxy and compiled a large sample that have an axisymmetric morphology, which we define to mean SNRs with a bilateral or barrel-shaped morphology, in addition to one-sided shells. We selected the cleanest examples and model each of these at their appropriate Galactic position using two GMF models, those of Jansson & Farrar (2012a), which includes a vertical halo component, and Sun et al. (2008) that is oriented entirely parallel to the plane. Since the magnitude and relative orientation of the magnetic field changes with distance from the sun, we analyse a range of distances, from 0.5 to 10 kpc in each case. Using a physically motivated model of a SNR expanding into the ambient GMF, we find the models using Jansson & Farrar (2012a) are able to reproduce observed morphologies of many SNRs in our sample. These results strongly support the presence of an off-plane, vertical component to the GMF, and the importance of the Galactic field on SNR morphology. Our approach also provides a potential new method for determining distances to SNRs, or conversely, distances to features in the large-scale GMF if SNR distances are known.
181 - Janet P. Simpson 2021
Sgr B1 is a luminous H II region in the Galactic Center immediately next to the massive star-forming giant molecular cloud Sgr B2 and apparently connected to it from their similar radial velocities. In 2018 we showed from SOFIA FIFI-LS observations o f the [O III] 52 and 88 micron lines that there is no central exciting star cluster and that the ionizing stars must be widely spread throughout the region. Here we present SOFIA FIFI-LS observations of the [O I] 146 and [C II] 158 micron lines formed in the surrounding photodissociation regions (PDRs). We find that these lines correlate neither with each other nor with the [O III] lines although together they correlate better with the 70 micron Herschel PACS images from Hi-GAL. We infer from this that Sgr B1 consists of a number of smaller H II regions plus their associated PDRs, some seen face-on and the others seen more or less edge-on. We used the PDR Toolbox to estimate densities and the far-ultraviolet intensities exciting the PDRs. Using models computed with Cloudy, we demonstrate possible appearances of edge-on PDRs and show that the density difference between the PDR densities and the electron densities estimated from the [O III] line ratios is incompatible with pressure equilibrium unless there is a substantial pressure contribution from either turbulence or magnetic field or both. We likewise conclude that the hot stars exciting Sgr B1 are widely spaced throughout the region at substantial distances from the gas with no evidence of current massive star formation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا