ترغب بنشر مسار تعليمي؟ اضغط هنا

The Connection between Supernova Remnants and the Galactic Magnetic Field: A Global Radio Study of the Axisymmetric Sample

79   0   0.0 ( 0 )
 نشر من قبل Jennifer West
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The study of supernova remnants (SNRs) is fundamental to understanding the chemical enrichment and magnetism in galaxies, including our own Milky Way. In an effort to understand the connection between the morphology of SNRs and the Galactic magnetic field (GMF), we have examined the radio images of all known SNRs in our Galaxy and compiled a large sample that have an axisymmetric morphology, which we define to mean SNRs with a bilateral or barrel-shaped morphology, in addition to one-sided shells. We selected the cleanest examples and model each of these at their appropriate Galactic position using two GMF models, those of Jansson & Farrar (2012a), which includes a vertical halo component, and Sun et al. (2008) that is oriented entirely parallel to the plane. Since the magnitude and relative orientation of the magnetic field changes with distance from the sun, we analyse a range of distances, from 0.5 to 10 kpc in each case. Using a physically motivated model of a SNR expanding into the ambient GMF, we find the models using Jansson & Farrar (2012a) are able to reproduce observed morphologies of many SNRs in our sample. These results strongly support the presence of an off-plane, vertical component to the GMF, and the importance of the Galactic field on SNR morphology. Our approach also provides a potential new method for determining distances to SNRs, or conversely, distances to features in the large-scale GMF if SNR distances are known.

قيم البحث

اقرأ أيضاً

112 - J. L. West , S. Safi-Harb , 2016
The mechanism for acceleration of cosmic rays in supernova remnants (SNRs) is an outstanding question in the field. We model a sample of 32 axisymmetric SNRs using the quasi-perpendicular and quasi-parallel cosmic-ray-electron (CRE) acceleration case s. The axisymmetric sample is defined to include SNRs with a double-sided, bilateral morphology, and also those with a one-sided morphology where one limb is much brighter than the other. Using a coordinate transformation technique, we insert a bubble-like model SNR into a model of the Galactic magnetic field. Since radio emission of SNRs is dominated by synchrotron emission and since this emission depends on the magnetic field and CRE distribution, we are able to simulate the SNRs emission and compare this to data. We find that the quasi-perpendicular CRE acceleration case is much more consistent with the data than the quasi-parallel CRE acceleration case, with G327.6+14.6 (SN1006) being a notable exception. We propose that SN1006 may be a case where both quasi-parallel and quasi-perpendicular acceleration are simultaneously at play in a single SNR.
Context. The properties of the population of Galactic supernova remnants (SNRs) are essential to our understanding of the dynamics of the interstellar medium (ISM) in the Milky Way. However, the completeness of the catalog of Galactic SNRs is expecte d to be only ${sim}30%$, with on order 700 SNRs yet to be detected. Deep interferometric radio continuum surveys of the Galactic plane help in rectifying this apparent deficiency by identifying low surface brightness SNRs and compact SNRs that have not been detected in previous surveys. However, SNRs are routinely confused with H II regions, which can have similar radio morphologies. Radio spectral index, polarization, and emission at mid-infrared (MIR) wavelengths can help distinguish between SNRs and H II regions. Aims. We aim to identify SNR candidates using continuum images from the Karl G. Jansky Very Large Array GLObal view of the STAR formation in the Milky Way (GLOSTAR) survey. Methods. GLOSTAR is a C-band (4--8 GHz) radio wavelength survey of the Galactic plane covering $358^{circ} leq l leq 60^{circ}, |b| leq 1^{circ}$. The continuum images from this survey, which resulted from observations with the most compact configuration of the array, have an angular resolution of $18$. We searched for SNRs in these images to identify known SNRs, previously identified SNR candidates, and new SNR candidates. We study these objects in MIR surveys and the GLOSTAR polarization data to classify their emission as thermal or nonthermal. Results. We identify 157 SNR candidates, of which 80 are new. Polarization measurements provide evidence of nonthermal emission from 9 of these candidates. We find that two previously identified candidates are filaments. We also detect emission from 91 of the 94 known SNRs in the survey region. Four of these are reclassified as H II regions following detection in MIR surveys. (Abridged)
In this paper, we investigate the possibility of significant production of thermal bremsstrahlung radiation at radio continuum frequencies that could be linked to some Galactic supernova remnants (SNRs). The main targets for this investigation are SN Rs expanding in high density environments. There are several indicators of radio thermal bremsstrahlung radiation from SNRs, such as a flattening at higher frequencies and thermal absorption at lower frequencies intrinsic to an SNR. In this work we discuss the radio continuum properties of 3 SNRs that are the best candidates for testing our hypothesis of significant thermal emission. In the case of SNRs IC443 and 3C391, thermal absorption has been previously detected. For IC443, the contribution of thermal emission at 1 GHz, from our model fit is 3-57%. It is similar to the estimate obtained from the thermal absorption properties (10-40% at 1 GHz). In the case of the 3C391 the conclusions are not so clear. The results from our model fit (thermal emission contribution of 10-25% at 1 GHz) and results obtained from the low frequency absorption (thermal contribution of 0.15-7% at 1 GHz) do not overlap. For the SNR 3C396 we suggest that if previously detected thermal absorption could be intrinsic to the SNR then the thermal emission (<47% at 1 GHz from our model fit) could be significant enough to shape the radio continuum spectrum at high frequencies. Polarization observations for these SNRs can constrain the strength of a thermal component. Reliable observations at low frequencies (<100 MHz) are needed as well as more data at high radio frequencies (>1 GHz), in order to make stronger conclusions about the existence of radio thermally active SNRs.
76 - X. H. Sun 2011
We study the spectral and polarization properties of supernova remnants (SNRs) based on our 6cm survey data. The observations were taken from the Sino-German 6cm polarization survey of the Galactic plane. By using the integrated flux densities at 6cm together with measurements at other wavelengths from the literature we derive the global spectra of 50 SNRs. In addition, we use the observations at 6cm to present the polarization images of 24 SNRs. We derived integrated flux densities at 6cm for 51 small SNRs with angular sizes less than 1 degree. Global radio spectral indices were obtained in all the cases except for Cas A. For SNRs G15.1-1.6, G16.2-2.7, G16.4-0.5, G17.4-2.3, G17.8-2.6, G20.4+0.1, G36.6+2.6, G43.9+1.6, G53.6-2.2, G55.7+3.4, G59.8+1.2, G68.6-1.2, and G113.0+0.2, the spectra have been significantly improved. From our analysis we argue that the object G16.8-1.1 is probably an HII region instead of a SNR. Cas A shows a secular decrease in total intensity, and we measured a flux density of 688+/-35 Jy at 6cm between 2004 and 2008. Polarized emission from 25 SNRs were detected. For G16.2-2.7, G69.7+1.0, G84.2-0.8 and G85.9-0.6, the polarized emission is detected for the first time confirming them as SNRs. High frequency observations of SNRs are rare but important to establish their spectra and trace them in polarization in particular towards the inner Galaxy where Faraday effects are important.
In this paper we present new empirical radio surface brightness-to-diameter ({Sigma} - D) relations for supernova remnants (SNRs) in our Galaxy. We also present new theoretical derivations of the {Sigma} - D relation based on equipartition or on cons tant ratio between cosmic rays and magnetic field energy. A new calibration sample of 60 Galactic SNRs with independently determined distances is created. Instead of (standard) vertical regression, used in previous papers, different fitting procedures are applied to the calibration sample in the log {Sigma} - log D plane. Non-standard regressions are used to satisfy the requirement that values of parameters obtained from the fitting of {Sigma} - D and D - {Sigma} relations should be invariant within estimated uncertainties. We impose symmetry between {Sigma} - D and D - {Sigma} due to the existence of large scatter in both D and {Sigma}. Using four fitting methods which treat {Sigma} and D symmetrically, different {Sigma} - D slopes {beta} are obtained for the calibration sample. Monte Carlo simulations verify that the slopes of the empirical {Sigma} - D relation should be determined by using orthogonal regression, because of its good performance for data sets with severe scatter. The slope derived here ({beta} = 4.8) is significantly steeper than those derived in previous studies. This new slope is closer to the updated theoretically predicted surface brightness-diameter slope in the radio range for the Sedov phase. We also analyze the empirical {Sigma} - D relations for SNRs in the dense environment of molecular clouds and for SNRs evolving in lower-density interstellar medium. Applying the new empirical relation to estimate distances of Galactic SNRs results in a dramatically changed distance scale.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا