ﻻ يوجد ملخص باللغة العربية
The standard Ginzburg-Landau model of competing-order superconductors is studied. It is observed that this model possesses two distinct species of vortex, and consequently has two distinct integer valued topological charges. A simple point particle model of long range forces between (anti)vortices of any species is developed and compared with numerical simulations of the full field theory, excellent agreement being found. Some of the results are quite counterintuitive. For example, a parameter regime exists where vortices of one species repel both vortices and antivortices of the other.
We investigate the interaction potential of superconducting vortices at the full quantum level. We formulate the interaction potential in a constrained path integral and calculate it by the quantum Monte Carlo simulation. The vortex-vortex potential
We show that the asymmetric tunneling spectrum observed in the cuprate superconductors stems from the existence of a competing order. The competition between the competing order and superconductivity can create a charge depletion region near the surf
We demonstrate existence of non-pairwise interaction forces between vortices in multicomponent and layered superconducting systems. That is, in contrast to most common models, the interactions in a group of such vortices is not a universal superposit
Preformed pairs above $T_c$ and the two-gap scenarios are two main proposals for describing the low doping pseudogap phase of high-$T_c$ cuprates. Very recent angle-resolved photoemission experiments have shown features which were interpreted as evid
We present Raman scattering experiments in ${rm La_{2-x}Sr_xCuO_4}$ single crystals at various doping levels x and compare the results with theoretical predictions obtained assuming an interaction mediated by spin and charge fluctuations. The light-s