ﻻ يوجد ملخص باللغة العربية
Strong winds and ultraviolet (UV) radiation from O-type stars disrupt and ionize their molecular core birthplaces, sweeping up material into parsec-size shells. Owing to dissociation by starlight, the thinnest shells are expected to host low molecular abundances and therefore little star formation. Here, we expand previous maps taken with the IRAM 30m telescope and present square-degree 12CO and 13CO (J=2-1) maps of the wind-driven Veil bubble that surrounds the Trapezium cluster and its natal Orion molecular core (OMC). Although widespread and extended CO emission is largely absent from the Veil, we show that several CO globules exist and are embedded in the [CII]158um-bright shell that confines the bubble. This includes the first detection of quiescent CO at negative LSR velocities in Orion. Given the harsh UV irradiation conditions in this translucent material, the detection of CO globules is surprising. These globules are small (R=7,100 AU), not massive (M=0.3M_Sun), and are moderately dense: n_ H=4x10^4 cm^-3 (median values). They are confined by the external pressure of the shell, P_ext/k~10^7 cm^-3 K, and are likely magnetically supported. They are either transient objects formed by instabilities or have detached from pre-existing molecular structures, sculpted by the passing shock associated with the expanding shell and by UV radiation from the Trapezium. Some represent the first stages in the formation of small pillars, others of isolated small globules. Although their masses do not suggest they will form stars, one globule matches the position of a known YSO. The lack of extended CO in the Veil shell demonstrates that feedback from massive stars expels, agitates, and reprocesses most of the disrupted molecular cloud gas, thereby limiting the star-formation rate in the region. The presence of globules is a result of this feedback.
We present fully sampled ~3 resolution images of the 12CO(J=2-1), 13CO(J=2-1), and C18O(J=2-1) emission taken with the newly developed 1.85-m mm-submm telescope toward the entire area of the Orion A and B giant molecular clouds. The data were compare
Using the IRAM 30m telescope we have surveyed a $1times0.8^{circ}$ part of the Orion molecular cloud in the $^{12}$CO and $^{13}$CO (2-1) lines with a maximal spatial resolution of $sim$11 and spectral resolution of $sim$ 0.4 km~s$^{-1}$. The cloud a
The Gould Belt Legacy Survey will map star-forming regions within 500 pc, using HARP (Heterodyne Array Receiver Programme), SCUBA-2 (Submillimetre Common-User Bolometer Array 2) and POL-2 (Polarimeter 2) on the James Clerk Maxwell Telescope (JCMT). T
CO isotopologue transitions are routinely observed in molecular clouds to probe the column density of the gas, the elemental ratios of carbon and oxygen, and to trace the kinematics of the environment. We aim at estimating the abundances, excitation
During their infancy, stars are well known to expel matter violently in the form of well-defined, collimated outflows. A fairly unique exception is found in the Orion BN/KL star-forming region where a poorly collimated and somewhat disordered outflow