ﻻ يوجد ملخص باللغة العربية
During their infancy, stars are well known to expel matter violently in the form of well-defined, collimated outflows. A fairly unique exception is found in the Orion BN/KL star-forming region where a poorly collimated and somewhat disordered outflow composed of numerous elongated ``finger-like structures was discovered more than 30 years ago. In this letter, we report the discovery in the same region of an even more atypical outflow phenomenon. Using $^{13}$CO(2-1) line observations made with the Submillimeter Array (SMA), we have identified there a 500 to 1,000 years old, expanding, roughly spherically symmetric bubble whose characteristics are entirely different from those of known outflows associated with young stellar objects. The center of the bubble coincides with the initial position of a now defunct massive multiple stellar system suspected to have disintegrated 500 years ago, and with the center of symmetry of the system of molecular fingers surrounding the Kleinmann-Low nebula. We hypothesize that the bubble is made up of gas and dust that used to be part of the circumstellar material associated with the decayed multiple system. The Orion hot core, recently proposed to be the result of the impact of a shock wave onto a massive dense core, is located toward the south-east quadrant of the bubble. The supersonic expansion of the bubble, and/or the impact of some low-velocity filaments provide a natural explanation for its origin.
Deuterated molecules have been detected and studied toward Orion BN/KL in the past decades, mostly with single-dish telescopes. However, high angular resolution data are critical not only for interpreting the spatial distribution of the deuteration r
High spatial resolution low-J 12CO observations have shown that the wide-angle outflow seen in the Orion BN/KL region correlates with the famous H2 fingers. Recently, high-resolution large-scale mappings of mid- and higher-J CO emissions have been re
As one of the prime targets of interstellar chemistry study, Orion BN/KL clearly shows different molecular distributions between large nitrogen- (e.g., C2H5CN) and oxygen-bearing (e.g., HCOOCH3) molecules. However, acetone (CH3)2CO, a special complex
We present the discovery of expanding spherical shells around low to intermediate-mass young stars in the Orion A giant molecular cloud using observations of $^{12}$CO (1-0) and $^{13}$CO (1-0) from the Nobeyama Radio Observatory 45-meter telescope.
Complex Organic Molecules (COMs) are believed to form in the ice mantle of dust grains and are released to the gas by thermal sublimation when grain mantles are heated to temperatures of $T_{rm d}gtrsim 100,rm K$. However, some COMs are detected in r