ترغب بنشر مسار تعليمي؟ اضغط هنا

Protracted Kondo screening and kagome bands in heavy-fermion metal Ce$_{3}$Al

105   0   0.0 ( 0 )
 نشر من قبل Li Huang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Ce$_{3}$Al is an archetypal heavy-fermion compound with multiple crystalline phases. Here, we try to investigate its electronic structures in the hexagonal phase ($alpha$-Ce$_{3}$Al) and cubic phase ($beta$-Ce$_{3}$Al) by means of a combination of density functional theory and single-site dynamical mean-field theory. We confirm that the 4$f$ valence electrons in both phases are itinerant, accompanied with strong valence state fluctuations. Their 4$f$ band structures are heavily renormalized by electronic correlations, resulting in large effective electron masses. The Kondo screening in Ce$_{3}$Al would be protracted over a wide range of temperature since the single-impurity Kondo temperature $T_{K}$ is much higher than the coherent Kondo temperature $T^{*}_{K}$. Especially, the crystal structure of $alpha$-Ce$_{3}$Al forms a layered kagome lattice. We observe conspicuous kagome-derived flat bands and Dirac cones (or gaps) in its quasiparticle band structure. Therefore, it is concluded that the hexagonal phase of Ce$_{3}$Al will be a promising candidate of heavy-fermion kagome metal.

قيم البحث

اقرأ أيضاً

Dimensionality plays an essential role in determining the anomalous non-Fermi liquid properties in heavy fermion systems. So far most heavy fermion compounds are quasi-two-dimensional or three-dimensional. Here we report the synthesis and systematic investigations of the single crystals of the quasi-one-dimensional Kondo lattice CeCo$_2$Ga$_8$. Resistivity measurements at ambient pressure reveal the onset of coherence at $T^*approx 20,$K and non-Fermi liquid behavior with linear temperature dependence over a decade in temperature from 2 K to 0.1 K. The specific heat increases logarithmically with lowering temperature between 10 K and 2 K and reaches 800 mJ/mol K$^2$ at 1 K, suggesting that CeCo$_2$Ga$_8$ is a heavy fermion compound in the close vicinity of a quantum critical point. Resistivity measurements under pressure further confirm the non-Fermi liquid behavior in a large temperature-pressure range. The magnetic susceptibility is found to follow the typical behavior for a one-dimensional (1D) spin chain from 300 K down to $T^*$, and first-principles calculations predict flat Fermi surfaces for the itinerant $f$-electron bands. These suggest that CeCo$_2$Ga$_8$ is a rare example of the quasi-1D Kondo lattice, but its non-Fermi liquid behaviors resemble those of the quasi-two-dimensional YbRh$_2$Si$_2$ family. The study of the quasi-one-dimensional CeCo$_2$Ga$_8$ family may therefore help us to understand the role of dimensionality on heavy fermion physics and quantum criticality.
The ground state properties of CeFePO, a homologue of the new high temperature superconductors RFePnO(1-x)Fx, were studied by means of susceptibility, specific heat, resistivity, and NMR measurements on polycrystals. All the results demonstrate that this compound is a magnetically non-ordered heavy Fermion metal with a Kondo temperature TK~10K, a Sommerfeld coefficient gamma=700mJ/molK2 and a mass enhancement factor of the order of 200. The absence of a Fe-contribution to the effective moment at high temperatures indicates that the magnetism in CeFePO is completely dominated by the effect of Ce. Thus the strong electronic correlation effects originate from the Ce-4f electrons rather than from the Fe-3d electrons. An enhanced Sommerfeld-Wilson ratio R=5.5 as well as a Korringa product S0/T1TK2~0.065 well below 1 indicate the presence of ferromagnetic correlations. Therefore, CeFePO appears to be on the non-magnetic side of a ferromagnetic instability.
We report on single crystal growth and crystallographic parameters results of Ce$_2$PdIn$_8$, Ce$_3$PdIn$_{11}$, Ce$_2$PtIn$_8$ and Ce$_3$PtIn$_{11}$. The Pt-systems Ce$_2$PtIn$_8$ and Ce$_3$PtIn$_{11}$ are synthesized for the first time. All these c ompounds are member of the Ce$_n$T$_m$In$_{3n+2m}$ (n = 1, 2,..; m = 1, 2,.. and T = transition metal) to which the extensively studied heavy fermion superconductor CeCoIn$_5$ belongs. Single crystals have been grown by In self-flux method. Differential scanning calorimetry studies were used to derive optimal growth conditions. Evidently, the maximum growth conditions for these materials should not exceed 750 $^{circ}$C. Single crystal x-ray data show that Ce$_2$TIn$_8$ compounds crystallize in the tetragonal Ho$_2$CoGa$_8$ phase (space group P4/mmm) with lattice parameters a =4.6898(3) $AA$ and c =12.1490(8) $AA$ for the Pt-based one (Pd: a = 4.6881(4) $AA$ and c = 12.2031(8) AA). The Ce$_3$TIn$_{11}$ compounds adopt the Ce$_3$PdIn$_{11}$ structure with a = 4.6874(4) $AA$ and c = 16.8422(12) $AA$ for the Pt-based one (Pd: a = 4.6896 $AA$ and c = 16.891 AA). Specific heat experiments on Ce$_3$PtIn$_{11}$ and Ce$_3$PdIn$_{11}$ have revealed that both compounds undergo two successive magnetic transitions at T$_1$ ~ 2.2 K followed by T$_N$ ~ 2.0 K and T$_1$ ~ 1.7 K and T$_N$ ~ 1.5 K, respectively. Additionally, both compounds exhibit enhanced Sommerfeld coefficients yielding {gamma}$_{Pt}$ = 0.300 J/mol K$^2$ Ce ({gamma}$_{Pd}$ = 0.290 J/mol K$^2$ Ce), hence qualifying them as heavy fermion materials.
CoSn is a Pauli paramagnet with relatively flat d-bands centered about 100 meV below the Fermi energy Ef. Single crystals of CoSn lightly doped with Fe, In, or Ni are investigated using x-ray and neutron scattering, magnetic susceptibility and magnet ization, ac susceptibility, specific heat and resistivity measurements. Within the rigid band approximation, hole doping with a few percent of Fe or In should move the flat bands closer to Ef, whereas electron doping with Ni should move the flat bands further away from Ef. We provide evidence that this indeed occurs. Fe and In doping drive CoSn toward magnetism, while Ni doping suppresses CoSns already weak magnetic response. The resulting ground state is different for Fe versus In doping. For Fe-doped crystals, Co1-xFexSn, with 0.02 < x < 0.27, the magnetic and specific heat data are consistent with the formation of a spin glass, with a glass transition temperature, Tg, ranging from 1 K for x=0.02 to 10 K for x= 0.27. Powder and single crystal neutron diffraction found no evidence of long-range magnetic order below Tg with x = 0.17. For In-doped crystals, CoSn1-yIny, both the magnetic susceptibility and the Sommerfeld coefficient, gamma, increase substantially relative to pure CoSn, but with no clear indication of a magnetic transition for 0.05 < y < 0.2. CoSn crystals doped with Ni (Co0.93Ni0.07Sn) have a significantly smaller magnetic susceptibility and gamma than pure CoSn, consistent with the flat bands further from Ef.
Insulating states can be topologically nontrivial, a well-established notion that is exemplified by the quantum Hall effect and topological insulators. By contrast, topological metals have not been experimentally evidenced until recently. In systems with strong correlations, they have yet to be identified. Heavy fermion semimetals are a prototype of strongly correlated systems and, given their strong spin-orbit coupling, present a natural setting to make progress. Here we advance a Weyl-Kondo semimetal phase in a periodic Anderson model on a noncentrosymmetric lattice. The quasiparticles near the Weyl nodes develop out of the Kondo effect, as do the surface states that feature Fermi arcs. We determine the key signatures of this phase, which are realized in the heavy fermion semimetal Ce$_3$Bi$_4$Pd$_3$. Our findings provide the much-needed theoretical foundation for the experimental search of topological metals with strong correlations, and open up a new avenue for systematic studies of such quantum phases that naturally entangle multiple degrees of freedom.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا