ﻻ يوجد ملخص باللغة العربية
Laguerre-Gaussian (LG) modes, carrying orbital angular momentum of light, are critical for important applications such as high-capacity optical communications, super-resolution imaging, and multi-dimensional quantum entanglement. Advanced developments in these applications strongly demand reliable and tunable LG mode laser sources, which, however, do not yet exist. Here, we experimentally demonstrate highly-efficient, highly-pure, broadly-tunable, and topological-charge-controllable LG modes from a Janus optical parametric oscillator (OPO). Janus OPO featuring two-face cavity mode is designed to guarantee an efficient evolution from a Gaussian-shaped fundamental pumping mode to a desired LG parametric mode. The output LG mode has a tunable wavelength between 1.5 um and 1.6 um with a conversion efficiency above 15%, a topological charge switchable from -4 to 4, and a mode purity as high as 97%, which provides a high-performance solid-state light source for high-end demands in multi-dimensional multiplexing/demultiplexing, control of spin-orbital coupling between light and atoms, and so on.
We have investigated the generation of highly pure higher-order Laguerre-Gauss (LG) beams at high laser power of order 100W, the same regime that will be used by 2nd generation gravitational wave interferometers such as Advanced LIGO. We report on th
We study optical parametric oscillations in Kerr-nonlinear microresonators, revealing an intricate solution space -- parameterized by the pump-to-signal conversion efficiency -- that arises from an interplay of nonlinear processes. Using a three-mode
Vast geographical distances in Africa are a leading cause for the so-called digital divide due to the high cost of installing fibre. Free-Space Optical (FSO) communications offer a convenient and higher bandwidth alternative to point-to-point radio m
We report a 65MHz-bandwidth triangular-shaped optical parametric oscillator (OPO) for squeezed vacuum generation at 860nm. The triangle structure of our OPO enables the round-trip length to reach 45mm as a ring cavity, which provides a counter circul
The multiple lobes of high order Hermite-Gaussian (HG) laser modes differ in terms of shape, size, and optical energy distribution. Here, we introduce a generic numerical method that redistributes optical energy among the lobes of high order HG modes