ترغب بنشر مسار تعليمي؟ اضغط هنا

The Resilience of Hermite- and Laguerre-Gaussian Modes in Turbulence

118   0   0.0 ( 0 )
 نشر من قبل Mitchell Cox Mr
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Vast geographical distances in Africa are a leading cause for the so-called digital divide due to the high cost of installing fibre. Free-Space Optical (FSO) communications offer a convenient and higher bandwidth alternative to point-to-point radio microwave links, with the possibility of re-purposing existing infrastructure. Unfortunately, the range of high bandwidth FSO remains limited. While there has been extensive research into an optimal mode set for FSO to achieve maximum data throughput by mode division multiplexing, there has been relatively little work investigating optical modes to improve the resilience of FSO links. Here we experimentally show that a carefully chosen subset of Hermite-Gaussian modes is more resilient to atmospheric turbulence than similar Laguerre-Gauss beams, theoretically resulting in a 167% theoretical increase of propagation distance at a mode dependent loss of 50%.



قيم البحث

اقرأ أيضاً

206 - Yijie Shen , Yuan Meng , Xing Fu 2018
A generalized family of scalar structured Gaussian modes including helical-Ince--Gaussian (HIG) and Hermite--Laguerre--Gaussian (HLG) beams is presented with physical insight upon a hybrid topological evolution nature of multi-singularity vortex beam s carrying orbital angular momentum (OAM). Considering the physical origins of intrinsic coordinates aberration and the Gouy phase shift, a closed-form expression is derived to characterize the general modes in astigmatic optical systems. Moreover, a graphical representation, Singularities Hybrid Evolution Nature (SHEN) sphere, is proposed to visualize the topological evolution of the multi-singularity beams, accommodating HLG, HIG and other typical subfamilies as characteristic curves on the sphere surface. The salient properties of SHEN sphere for describing the precise singularities splitting phenomena, exotic structured light fields, and Gouy phase shift are illustrated with adequate experimental verifications.
We found that small perturbations of the optical vortex core in the Laguerre-Gaussian (LG) beams generate a fine structure of the Hermite-Gauss (HG) mode spectrum. Such perturbations can be easily simulated by weak variations of amplitudes and phases of the HG modes in the expansion of the LG beam field. We also theoretically substantiated and experimentally implemented a method for measuring the topological charge of LG beams with an arbitrary number of ring dislocations. Theoretical discussion and experimental studies were accompanied by simple examples of estimating the orbital angular momentum and the topological charge of perturbed LG beams.
Free-space optical communication with spatial modes of light has become topical due to the possibility of dramatically increasing communication bandwidth via Mode Division Multiplexing (MDM). While both scalar and vector vortex modes have been used a s transmission bases, it has been suggested that the latter is more robust in turbulence. Using orbital angular momentum as an example, we demonstrate theoretically and experimentally that the crosstalk due to turbulence is the same in the scalar and vector basis sets of such modes. This work brings new insights about the behaviour of vector and scalar modes in turbulence, but more importantly it demonstrates that when considering optimal modes for MDM, the choice should not necessarily be based on their vectorial nature.
This note describes the analytical derivation of the response of bullseye detectors to optical beats between higher-order spatial modes of the Laguerre-Gauss form, and subsequently the Hermite-Gauss form. Also included is a comparison with numericall y calculated beat coefficients, and a simple example of the use of the resulting beat coefficients in simulating a mode mismatch sensor for a Fabry-Perot cavity.
Mode-locking is predicted in a nanolaser cavity forming an effective photonic harmonic potential. The cavity is substantially more compact than a Fabry-Perot resonator with comparable pulsing period, which is here controlled by the potential. In the limit of instantaneous gain and absorption saturation, mode-locking corresponds to a stable dissipative soliton, which it very well approximated by the coherent state of a quantum mechanical harmonic oscillator. This property is robust against non-instantaneous material response and non-zero phase-intensity coupling.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا