ﻻ يوجد ملخص باللغة العربية
Let $mathbb{F}_q$ be a finite field of order $q$. Given a set $S$ of oriented spheres in $mathbb{F}_q^d$, how many pairs of spheres can be in contact? In this paper, we provide a sharp result for this question by using discrete Fourier analysis. More precisely, we will show that if the size of $S$ is not too large, then the number of pairs of contacting spheres in $S$ is $O(|S|^{2-varepsilon})$ for some $varepsilon>0$.
Let $mathbb{F}_q$ be an arbitrary finite field, and $mathcal{E}$ be a set of points in $mathbb{F}_q^d$. Let $Delta(mathcal{E})$ be the set of distances determined by pairs of points in $mathcal{E}$. By using the Kloosterman sums, Iosevich and Rudnev
In this paper, we prove an extension theorem for spheres of square radii in $mathbb{F}_q^d$, which improves a result obtained by Iosevich and Koh (2010). Our main tool is a new point-hyperplane incidence bound which will be derived via a cone restric
We study restriction of logarithmic Higgs bundles to the boundary divisor and we construct the corresponding nearby-cycles functor in positive characteristic. As applications we prove some strong semipositivity theorems for analogs of complex polariz
We extend an observation due to Stong that the distribution of the number of degree $d$ irreducible factors of the characteristic polynomial of a random $n times n$ matrix over a finite field $mathbb{F}_{q}$ converges to the distribution of the numbe
We consider an analog of the problem Veblen formulated in 1928 at the IMC: classify invariant differential operators between natural objects (spaces of either tensor fields, or jets, in modern terms) over a real manifold of any dimension. For unary o