ترغب بنشر مسار تعليمي؟ اضغط هنا

Fluctuations and correlations of transmission eigenchannels in diffusive media

93   0   0.0 ( 0 )
 نشر من قبل Nicholas Bender Mr.
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Selective excitation of a diffusive systems transmission eigenchannels enables manipulation of its internal energy distribution. The fluctuations and correlations of the eigenchannels spatial profiles, however, remain unexplored so far. Here we show that the depth profiles of high-transmission eigenchannels exhibit low realization-to-realization fluctuations. Furthermore, our experimental and numerical studies reveal the existence of inter-channel correlations, which are significant for low-transmission eigenchannels. Because high-transmission eigenchannels are robust and independent from other eigenchannels, they can reliably deliver energy deep inside turbid media.



قيم البحث

اقرأ أيضاً

Transmission eigenchannels and associated eigenvalues, that give a full account of wave propagation in random media, have recently emerged as a major theme in theoretical and applied optics. Here we demonstrate, both analytically and numerically, tha t in quasi one-dimensional ($1$D) diffusive samples, their behavior is governed mostly by the asymmetry in the reflections of the sample edges rather than by the absolute values of the reflection coefficients themselves. We show that there exists a threshold value of the asymmetry parameter, below which high transmission eigenchannels exist, giving rise to a singularity in the distribution of the transmission eigenvalues, $rho({cal T}rightarrow 1)sim(1-{cal T})^{-frac{1}{2}}$. At the threshold, $rho({cal T})$ exhibits critical statistics with a distinct singularity $sim(1-{cal T})^{-frac{1}{3}}$; above it the high transmission eigenchannels disappear and $rho({cal T})$ vanishes for ${cal T}$ exceeding a maximal transmission eigenvalue. We show that such statistical behavior of the transmission eigenvalues can be explained in terms of effective cavities (resonators), analogous to those in which the states are trapped in $1$D strong Anderson localization. In particular, the $rho ( mathcal{T}) $-transition can be mapped onto the shuffling of the resonator with perfect transmittance from the sample center to the edge with stronger reflection. We also find a similar transition in the distribution of resonant transmittances in $1$D layered samples. These results reveal a physical connection between high transmission eigenchannels in diffusive systems and $1$D strong Anderson localization. They open up a fresh opportunity for practically useful application: controlling the transparency of opaque media by tuning their coupling to the environment.
We analyze the transport properties of a neutral tracer in a carrier fluid flowing through percolation-like porous media with spatial correlations. We model convection in the mass transport process using the velocity field obtained by the numerical s olution of the Navier-Stokes and continuity equations in the pore space. We show that the resulting statistical properties of the tracer can be approximated by a Levy walk model, which is a consequence of the broad distribution of velocities plus the existence of spatial correlations in the porous medium.
We study, theoretically and experimentally, disorder-induced resonances in randomly-layered samples,and develop an algorithm for the detection and characterization of the effective cavities that give rise to these resonances. This algorithm enables u s to find the eigen-frequencies and pinpoint the locations of the resonant cavities that appear in individual realizations of random samples, for arbitrary distributions of the widths and refractive indices of the layers. Each cavity is formed in a region whose size is a few localization lengths. Its eigen-frequency is independent of the location inside the sample, and does not change if the total length of the sample is increased by, for example, adding more scatterers on the sides. We show that the total number of cavities, $N_{mathrm{cav}}$, and resonances, $N_{mathrm{res}}$, per unit frequency interval is uniquely determined by the size of the disordered system and is independent of the strength of the disorder. In an active, amplifying medium, part of the cavities may host lasing modes whose number is less than $N_{mathrm{res}}$. The ensemble of lasing cavities behaves as distributed feedback lasers, provided that the gain of the medium exceeds the lasing threshold, which is specific for each cavity. We present the results of experiments carried out with single-mode optical fibers with gain and randomly-located resonant Bragg reflectors (periodic gratings). When the fiber was illuminated by a pumping laser with an intensity high enough to overcome the lasing threshold, the resonances revealed themselves by peaks in the emission spectrum. Our experimental results are in a good agreement with the theory presented here.
We summarize the results of our comprehensive analytical and numerical studies of the effects of polarization on the Anderson localization of classical waves in one-dimensional random stacks. We consider homogeneous stacks composed entirely of normal materials or metamaterials, and also mixed stacks composed of alternating layers of a normal material and metamaterial. We extend the theoretical study developed earlier for the case of normal incidence [A. A. Asatryan et al, Phys. Rev. B 81, 075124 (2010)] to the case of off-axis incidence. For the general case where both the refractive indices and layer thicknesses are random, we obtain the long-wave and short-wave asymptotics of the localization length over a wide range of incidence angles (including the Brewster ``anomaly angle). At the Brewster angle, we show that the long-wave localization length is proportional to the square of the wavelength, as for the case of normal incidence, but with a proportionality coefficient substantially larger than that for normal incidence. In mixed stacks with only refractive-index disorder, we demonstrate that p-polarized waves are strongly localized, while for s-polarization the localization is substantially suppressed, as in the case of normal incidence. In the case of only thickness disorder, we study also the transition from localization to delocalization at the Brewster angle.
Transmission eigenchannels are building blocks of coherent wave transport in diffusive media, and selective excitation of individual eigenchannels can lead to diverse transport behavior. An essential yet poorly understood property is the transverse s patial profile of each eigenchannel, which is critical for coupling into and out of it. Here, we discover that the transmission eigenchannels of a disordered slab possess localized incident and outgoing profiles, even in the diffusive regime far from Anderson localization. Such transverse localization arises from a combination of reciprocity, local coupling of spatial modes, and nonlocal correlations of scattered waves. Experimentally, we observe signatures of such localization despite finite illumination area. Our results reveal the intrinsic characteristics of transmission eigenchannels in the open slab geometry, commonly used for applications in imaging and energy transfer through turbid media.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا