ﻻ يوجد ملخص باللغة العربية
We summarize the results of our comprehensive analytical and numerical studies of the effects of polarization on the Anderson localization of classical waves in one-dimensional random stacks. We consider homogeneous stacks composed entirely of normal materials or metamaterials, and also mixed stacks composed of alternating layers of a normal material and metamaterial. We extend the theoretical study developed earlier for the case of normal incidence [A. A. Asatryan et al, Phys. Rev. B 81, 075124 (2010)] to the case of off-axis incidence. For the general case where both the refractive indices and layer thicknesses are random, we obtain the long-wave and short-wave asymptotics of the localization length over a wide range of incidence angles (including the Brewster ``anomaly angle). At the Brewster angle, we show that the long-wave localization length is proportional to the square of the wavelength, as for the case of normal incidence, but with a proportionality coefficient substantially larger than that for normal incidence. In mixed stacks with only refractive-index disorder, we demonstrate that p-polarized waves are strongly localized, while for s-polarization the localization is substantially suppressed, as in the case of normal incidence. In the case of only thickness disorder, we study also the transition from localization to delocalization at the Brewster angle.
We have developed an approach allowing us to resolve the problem of non-conventional Anderson localization emerging in bilayered periodic-on-average structures with alternating layers of right-handed and left-handed materials. Recently, it was numeri
In this work we include the elastic scattering of longitudinal electromagnetic waves in transport theory using a medium filled with point-like, electric dipoles. The interference between longitudinal and transverse waves creates two new channels amon
Selective excitation of a diffusive systems transmission eigenchannels enables manipulation of its internal energy distribution. The fluctuations and correlations of the eigenchannels spatial profiles, however, remain unexplored so far. Here we show
We establish a fundamental relationship between the averaged density of states and the extinction mean free path of wave propagating in random media. From the principle of causality and the Kramers-Kronig relations, we show that both quantities are
We consider noninteracting electrons coupled to laser fields, and study perturbatively the effects of the lattice potential involving disorder on the harmonic components of the electric current, which are sources of high-order harmonic generation (HH