ﻻ يوجد ملخص باللغة العربية
The need to enforce fermionic antisymmetry in the nuclear many-body problem commonly requires use of single-particle coordinates, defined relative to some fixed origin. To obtain physical operators which nonetheless act on the nuclear many-body system in a Galilean-invariant fashion, thereby avoiding spurious center-of-mass contributions to observables, it is necessary to express these operators with respect to the translational intrinsic frame. Several commonly-encountered operators in nuclear many-body calculations, including the magnetic dipole and electric quadrupole operators (in the impulse approximation) and generators of SU(3) and Sp(3,R) symmetry groups, are bilinear in the coordinates and momenta of the nucleons and, when expressed in intrinsic form, become two-body operators. To work with such operators in a second-quantized many-body calculation, it is necessary to relate three distinct forms: the defining intrinsic-frame expression, an explicitly two-body expression in terms of two-particle relative coordinates, and a decomposition into one-body and separable two-body parts. We establish the relations between these forms, for general (non-scalar and non-isoscalar) operators bilinear in coordinates and momenta.
Precision tests of the Standard Model and searches for beyond the Standard Model physics often require nuclear structure input. There has been a tremendous progress in the development of nuclear ab initio techniques capable of providing accurate nucl
The application of renormalization group methods to microscopic nuclear many-body calculations is discussed. We present the solution of the renormalization group equations in the particle-hole channels for neutron matter and the application to S-wave
[Background:] It is well known that effective nuclear interactions are in general nonlocal. Thus if nuclear densities obtained from {it ab initio} no-core-shell-model (NCSM) calculations are to be used in reaction calculations, translationally invari
This is a very short presentation regarding developments in the theory of nuclear many-body problems, as seen and experienced by the author during the past 60 years with particular emphasis on the contributions of Gerry Brown and his research-group.
The UNEDF project was a large-scale collaborative effort that applied high-performance computing to the nuclear quantum many-body problem. UNEDF demonstrated that close associations among nuclear physicists, mathematicians, and computer scientists ca