ﻻ يوجد ملخص باللغة العربية
[Background:] It is well known that effective nuclear interactions are in general nonlocal. Thus if nuclear densities obtained from {it ab initio} no-core-shell-model (NCSM) calculations are to be used in reaction calculations, translationally invariant nonlocal densities must be available. [Purpose:] Though it is standard to extract translationally invariant one-body local densities from NCSM calculations to calculate local nuclear observables like radii and transition amplitudes, the corresponding nonlocal one-body densities have not been considered so far. A major reason for this is that the procedure for removing the center-of-mass component from NCSM wavefunctions up to now has only been developed for local densities. [Results:] A formulation for removing center-of-mass contributions from nonlocal one-body densities obtained from NCSM and symmetry-adapted NCSM (SA-NCSM) calculations is derived, and applied to the ground state densities of $^4$He, $^6$Li, $^{12}$C, and $^{16}$O. The nonlocality is studied as a function of angular momentum components in momentum as well as coordinate space [Conclusions:] We find that the nonlocality for the ground state densities of the nuclei under consideration increases as a function of the angular momentum. The relative magnitude of those contributions decreases with increasing angular momentum. In general, the nonlocal structure of the one-body density matrices we studied is given by the shell structure of the nucleus, and can not be described with simple functional forms.
Constructing microscopic effective interactions (`optical potentials) for nucleon-nucleus (NA) elastic scattering requires in first order off-shell nucleon-nucleon (NN) scattering amplitudes between the projectile and the struck target nucleon and no
We present an ab initio approach for the description of collective excitations and transition strength distributions of arbitrary nuclei up into the sd-shell that based on the No-Core Shell Model in combination with the Lanczos strength-function meth
Nuclear structure and reaction theory is undergoing a major renaissance with advances in many-body methods, strong interactions with greatly improved links to Quantum Chromodynamics (QCD), the advent of high performance computing, and improved comput
Based on the spectator expansion of the multiple scattering series we employ a nonlocal translationally invariant nuclear density derived from a chiral next-to-next-to-leading order (NNLO) and the very same interaction for consistent full-folding cal
The existence of multi-neutron systems has always been a debatable question. Indeed, both inter-nucleon correlations and a large continuum coupling occur in these states. We then employ the ab-initio no-core Gamow shell model to calculate the resonan