ﻻ يوجد ملخص باللغة العربية
In this paper we study a wide range of variants for computing the (discrete and continuous) Frechet distance between uncertain curves. We define an uncertain curve as a sequence of uncertainty regions, where each region is a disk, a line segment, or a set of points. A realisation of a curve is a polyline connecting one point from each region. Given an uncertain curve and a second (certain or uncertain) curve, we seek to compute the lower and upper bound Frechet distance, which are the minimum and maximum Frechet distance for any realisations of the curves. We prove that both the upper and lower bound problems are NP-hard for the continuous Frechet distance in several uncertainty models, and that the upper bound problem remains hard for the discrete Frechet distance. In contrast, the lower bound (discrete and continuous) Frechet distance can be computed in polynomial time. Furthermore, we show that computing the expected discrete Frechet distance is #P-hard when the uncertainty regions are modelled as point sets or line segments. The construction also extends to show #P-hardness for computing the continuous Frechet distance when regions are modelled as point sets. On the positive side, we argue that in any constant dimension there is a FPTAS for the lower bound problem when $Delta / delta$ is polynomially bounded, where $delta$ is the Frechet distance and $Delta$ bounds the diameter of the regions. We then argue there is a near-linear-time 3-approximation for the decision problem when the regions are convex and roughly $delta$-separated. Finally, we also study the setting with Sakoe--Chiba time bands, where we restrict the alignment between the two curves, and give polynomial-time algorithms for upper bound and expected discrete and continuous Frechet distance for uncertainty regions modelled as point sets.
The Frechet distance is a popular similarity measure between curves. For some applications, it is desirable to match the curves under translation before computing the Frechet distance between them. This variant is called the Translation Invariant Fre
The Frechet distance is a popular distance measure for curves which naturally lends itself to fundamental computational tasks, such as clustering, nearest-neighbor searching, and spherical range searching in the corresponding metric space. However, i
We study approximate-near-neighbor data structures for time series under the continuous Frechet distance. For an attainable approximation factor $c>1$ and a query radius $r$, an approximate-near-neighbor data structure can be used to preprocess $n$ c
We study the $c$-approximate near neighbor problem under the continuous Frechet distance: Given a set of $n$ polygonal curves with $m$ vertices, a radius $delta > 0$, and a parameter $k leq m$, we want to preprocess the curves into a data structure t
We study metric data structures for curves in doubling spaces, such as trajectories of moving objects in Euclidean $mathbb{R}^d$, where the distance between two curves is measured using the discrete Frechet distance. We design data structures in an e