ﻻ يوجد ملخص باللغة العربية
The Frechet distance is a popular distance measure for curves which naturally lends itself to fundamental computational tasks, such as clustering, nearest-neighbor searching, and spherical range searching in the corresponding metric space. However, its inherent complexity poses considerable computational challenges in practice. To address this problem we study distortion of the probabilistic embedding that results from projecting the curves to a randomly chosen line. Such an embedding could be used in combination with, e.g. locality-sensitive hashing. We show that in the worst case and under reasonable assumptions, the discrete Frechet distance between two polygonal curves of complexity $t$ in $mathbb{R}^d$, where $dinlbrace 2,3,4,5rbrace$, degrades by a factor linear in $t$ with constant probability. We show upper and lower bounds on the distortion. We also evaluate our findings empirically on a benchmark data set. The preliminary experimental results stand in stark contrast with our lower bounds. They indicate that highly distorted projections happen very rarely in practice, and only for strongly conditioned input curves. Keywords: Frechet distance, metric embeddings, random projections
In this paper we study a wide range of variants for computing the (discrete and continuous) Frechet distance between uncertain curves. We define an uncertain curve as a sequence of uncertainty regions, where each region is a disk, a line segment, or
The Frechet distance is a popular similarity measure between curves. For some applications, it is desirable to match the curves under translation before computing the Frechet distance between them. This variant is called the Translation Invariant Fre
We study approximate-near-neighbor data structures for time series under the continuous Frechet distance. For an attainable approximation factor $c>1$ and a query radius $r$, an approximate-near-neighbor data structure can be used to preprocess $n$ c
We study the $c$-approximate near neighbor problem under the continuous Frechet distance: Given a set of $n$ polygonal curves with $m$ vertices, a radius $delta > 0$, and a parameter $k leq m$, we want to preprocess the curves into a data structure t
The Frechet distance is a metric to compare two curves, which is based on monotonous matchings between these curves. We call a matching that results in the Frechet distance a Frechet matching. There are often many different Frechet matchings and not