ﻻ يوجد ملخص باللغة العربية
Creating a state-of-the-art deep-learning system requires vast amounts of data, expertise, and hardware, yet research into embedding copyright protection for neural networks has been limited. One of the main methods for achieving such protection involves relying on the susceptibility of neural networks to backdoor attacks, but the robustness of these tactics has been primarily evaluated against pruning, fine-tuning, and model inversion attacks. In this work, we propose a neural network laundering algorithm to remove black-box backdoor watermarks from neural networks even when the adversary has no prior knowledge of the structure of the watermark. We are able to effectively remove watermarks used for recent defense or copyright protection mechanisms while achieving test accuracies above 97% and 80% for both MNIST and CIFAR-10, respectively. For all backdoor watermarking methods addressed in this paper, we find that the robustness of the watermark is significantly weaker than the original claims. We also demonstrate the feasibility of our algorithm in more complex tasks as well as in more realistic scenarios where the adversary is able to carry out efficient laundering attacks using less than 1% of the original training set size, demonstrating that existing backdoor watermarks are not sufficient to reach their claims.
As companies continue to invest heavily in larger, more accurate and more robust deep learning models, they are exploring approaches to monetize their models while protecting their intellectual property. Model licensing is promising, but requires a r
Deep neural networks have been widely applied and achieved great success in various fields. As training deep models usually consumes massive data and computational resources, trading the trained deep models is highly demanded and lucrative nowadays.
Although deep neural networks (DNNs) have achieved a great success in various computer vision tasks, it is recently found that they are vulnerable to adversarial attacks. In this paper, we focus on the so-called textit{backdoor attack}, which injects
Deep learning models are increasingly used in mobile applications as critical components. Unlike the program bytecode whose vulnerabilities and threats have been widely-discussed, whether and how the deep learning models deployed in the applications
Watermarking of deep neural networks (DNN) can enable their tracing once released by a data owner. In this paper, we generalize white-box watermarking algorithms for DNNs, where the data owner needs white-box access to the model to extract the waterm