ﻻ يوجد ملخص باللغة العربية
Entanglement plays a central role in quantum information processing, indicating the non-local correlation of quantum matters. However, few effective ways are known to detect the amount of entanglement of an unknown quantum state. In this work, we propose a scheme to estimate the entanglement negativity of any bi-partition of a composite system. The proposed scheme is based on the random unitary evolution and local measurements on the single-copy quantum states, which is more practical compared with former methods based on collective measurements on many copies of the identical state. Meanwhile, we generalize the scheme to quantify the total multi-partite correlation. We demonstrate the efficiency of the scheme with theoretical statistical analysis and numerical simulations. The proposed scheme is quite suitable for state-of-the-art quantum platforms, which can serve as not only a useful benchmarking tool to advance the quantum technology, but also a probe to study fundamental quantum physics, such as the entanglement dynamics.
Numerous work had been done to quantify the entanglement of a two-qubit quantum state, but it can be seen that previous works were based on joint measurements on two copies or more than two copies of a quantum state under consideration. In this work,
We provide a characterization of multiqubit entanglement monogamy and polygamy constraints in terms of negativity. Using the square of convex-roof extended negativity (SCREN) and the Hamming weight of the binary vector related to the distribution of
In order to engineer an open quantum system and its evolution, it is essential to identify and control the memory effects. These are formally attributed to the non-Markovianity of dynamics that manifests itself by the evolution being indivisible in t
We revisit the problem of detection of entanglement of an unknown two-qubit state using minimal resources. Using weak values and just two copies of an arbitrary two-qubit state, we present a protocol where a post selection measurement in the computat
We advance a holographic conjecture for the entanglement negativity of bipartite quantum states in $(1+1)$-dimensional conformal field theories in the $AdS_3/CFT_2$ framework. Our conjecture exactly reproduces the replica technique results in the lar