ترغب بنشر مسار تعليمي؟ اضغط هنا

Entropic identification of the first order freezing transition of a suspension of hard sphere particles

54   0   0.0 ( 0 )
 نشر من قبل Hans Joachim Sch\\\"ope
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyse the experimental particle current auto correlation function (CAF) of suspensions of hard spheres. Interactions between the particles are mediated by thermally activated acoustic excitations in the solvent. Those acoustic modes are tantamount to the systems (energy) microstates and by their orthogonality, each of those modes can be identified with an independent Brownian particle current. Accordingly, partitioning of the systems energy states is impressed on the CAF. This impression provides a novel measure of the entropy and location of a partitioning/entropy limit at a packing fraction that coincides with that of the observed suspensions first order freezing transition.



قيم البحث

اقرأ أيضاً

By combining aspects of the coherent and self intermediate scattering functions, measured by dynamical light scattering on a suspension of hard sphere-like particles, we show that the arrest of particle number density fluctuations spreads from the po sition of the main structure factor peak. Taking the velocity auto-correlation function into account we propose that as density fluctuations are arrested the systems ability to respond to diffusing momentum currents is impaired and, accordingly, the viscosity increases. From the stretching of the coherent intermediate scattering function we read a quantitative manifestation of the undissipated thermal energy, the source of those, ergodicity restoring, processes that short-circuit the sharp transition to a perfect glass.
Multivalent particles bind to targets via many independent ligand-receptor bonding interactions. This microscopic design spans length scales in both synthetic and biological systems. Classic examples include interactions between cells, virus binding, synthetic ligand-coated micrometer-scale vesicles or smaller nano-particles, functionalised polymers, and toxins. Equilibrium multivalent binding is a continuous yet super-selective transition with respect to the number of ligands and receptors involved in the interaction. Increasing the ligand or receptor density on the two particles leads to sharp growth in the number of bound particles at equilibrium. Here we present a theory and Monte Carlo simulations to show that applying mechanical force to multivalent particles causes their adsorption/desorption isotherm on a surface to become sharper and more selective, with respect to variation in the number of ligands and receptors on the two objects. When the force is only applied to particles bound to the surface by one or more ligands, then the transition can become infinitely sharp and first-order---a new binding regime which we term hyper-selective. Force may be imposed by, e.g. flow of solvent around the particles, a magnetic field, chemical gradients, or triggered uncoiling of inert oligomers/polymers tethered to the particles to provide a steric repulsion to the surface. This physical principle is a step towards all or nothing binding selectivity in the design of multivalent constructs.
147 - Mingcheng Yang , Hongru Ma 2008
The solid-solid coexistence of a polydisperse hard sphere system is studied by using the Monte Carlo simulation. The results show that for large enough polydispersity the solid-solid coexistence state is more stable than the single-phase solid. The t wo coexisting solids have different composition distributions but the same crystal structure. Moreover, there is evidence that the solid-solid transition terminates in a critical point as in the case of the fluid-fluid transition.
We report results of dynamic light scattering measurements of the coherent intermediate scattering function (ISF) of glasses of hard spheres for several volume fractions and a range of scattering vectors around the primary maximum of the static struc ture factor. The ISF shows a clear crossover from an initial fast decay to a slower non-stationary decay. Ageing is quantified in several different ways. However, regardless of the method chosen, the perfect aged glass is approached in a power-law fashion. In particular, the coupling between the fast and slow decays, as measured by the degree of stretching of the ISF at the crossover, also decreases algebraically with waiting time. The non-stationarity of this coupling implies that even the fastest detectable processes are themselves non-stationary.
The complex behavior of confined fluids arising due to a competition between layering and local packing can be disentangled by considering quasi-confined liquids, where periodic boundary conditions along the confining direction restore translational invariance. This system provides a means to investigate the interplay of the relevant length scales of the confinement and the local order. We provide a mode-coupling theory of the glass transition (MCT) for quasi-confined liquids and elaborate an efficient method for the numerical implementation. The nonergodicity parameters in MCT are compared to computer-simulation results for a hard-sphere fluid. We evaluate the nonequilibrium-state diagram and investigate the collective intermediate scattering function. For both methods, nonmonotonic behavior depending on the confinement length is observed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا