ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamic properties of quasi-confined colloidal hard-sphere liquids near the glass transition

124   0   0.0 ( 0 )
 نشر من قبل Lukas Schrack
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The complex behavior of confined fluids arising due to a competition between layering and local packing can be disentangled by considering quasi-confined liquids, where periodic boundary conditions along the confining direction restore translational invariance. This system provides a means to investigate the interplay of the relevant length scales of the confinement and the local order. We provide a mode-coupling theory of the glass transition (MCT) for quasi-confined liquids and elaborate an efficient method for the numerical implementation. The nonergodicity parameters in MCT are compared to computer-simulation results for a hard-sphere fluid. We evaluate the nonequilibrium-state diagram and investigate the collective intermediate scattering function. For both methods, nonmonotonic behavior depending on the confinement length is observed.



قيم البحث

اقرأ أيضاً

We investigate the tagged-particle motion in a strongly interacting quasi-confined liquid using periodic boundary conditions along the confining direction. Within a mode-coupling theory of the glass transition (MCT) we calculate the self-nonergodicit y parameters and the self-intermediate scattering function and compare them with event-driven molecular dynamics simulations. We observe non-monotonic behavior for the in-plane mean-square displacement and further correlation functions which refer to higher mode indices encoding information about the perpendicular motion. The in-plane velocity-autocorrelation function reveals persistent anti-correlations with a negative algebraic power-law decay $t^{-2}$ at all packing fractions.
159 - S. Mandal , S. Lang , M. Gross 2014
Glass forming liquids exhibit a rich phenomenology upon confinement. This is often related to the effects arising from wall-fluid interactions. Here we focus on the interesting limit where the separation of the confining walls becomes of the order of a few particle diameters. For a moderately polydisperse, densely packed hard-sphere fluid confined between two smooth hard walls, we show via event-driven molecular dynamics simulations the emergence of a multiple reentrant glass transition scenario upon a variation of the wall separation. Using thermodynamic relations, this reentrant phenomenon is shown to persist also under constant chemical potential. This allows straightforward experimental investigation and opens the way to a variety of applications in micro- and nanotechnology, where channel dimensions are comparable to the size of the contained particles. The results are in-line with theoretical predictions obtained by a combination of density functional theory and the mode-coupling theory of the glass transition.
Transport properties of dense fluids are fundamentally challenging, because the powerful approaches of equilibrium statistical physics cannot be applied. Polar fluids compound this problem, because the long-range interactions preclude the use of a si mple effect-diameter approach based solely on hard spheres. Here, we develop a kinetic theory for dipolar hard-sphere fluids that is valid up to high density. We derive a mathematical approximation for the radial distribution function at contact directly from the equation of state, and use it to obtain the shear viscosity. We also perform molecular-dynamics simulations of this system and extract the shear viscosity numerically. The theoretical results compare favorably to the simulations.
162 - M. Bayer , J. Brader , F. Ebert 2007
The question about the existence of a structural glass transition in two dimensions is studied using mode coupling theory (MCT). We determine the explicit d-dependence of the memory functional of mode coupling for one-component systems. Applied to tw o dimensions we solve the MCT equations numerically for monodisperse hard discs. A dynamic glass transition is found at a critical packing fraction phi_c^{d=2} = 0.697 which is above phi_c^{d=3} = 0.516 by about 35%. phi^d_c scales approximately with phi^d_{rm rcp} the value for random close packing, at least for d=2, 3. Quantities characterizing the local, cooperative cage motion do not differ much for d=2 and d=3, and we e.g. find the Lindemann criterion for the localization length at the glass transition. The final relaxation obeys the superposition principle, collapsing remarkably well onto a Kohlrausch law. The d=2 MCT results are in qualitative agreement with existing results from MC and MD simulations. The mean squared displacements measured experimentally for a quasi-two-dimensional binary system of dipolar hard spheres can be described satisfactorily by MCT for monodisperse hard discs over four decades in time provided the experimental control parameter Gamma (which measures the strength of dipolar interactions) and the packing fraction phi are properly related to each other.
134 - Mingcheng Yang , Hongru Ma 2008
The solid-solid coexistence of a polydisperse hard sphere system is studied by using the Monte Carlo simulation. The results show that for large enough polydispersity the solid-solid coexistence state is more stable than the single-phase solid. The t wo coexisting solids have different composition distributions but the same crystal structure. Moreover, there is evidence that the solid-solid transition terminates in a critical point as in the case of the fluid-fluid transition.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا