ﻻ يوجد ملخص باللغة العربية
Inferring topological characteristics of complex networks from observed data is critical to understand the dynamical behavior of networked systems, ranging from the Internet and the World Wide Web to biological networks and social networks. Prior studies usually focus on the structure-based estimation to infer network sizes, degree distributions, average degrees, and more. Little effort attempted to estimate the specific degree of each vertex from a sampled induced graph, which prevents us from measuring the lethality of nodes in protein networks and influencers in social networks. The current approaches dramatically fail for a tiny sampled induced graph and require a specific sampling method and a large sample size. These approaches neglect information of the vertex state, representing the dynamical behavior of the networked system, such as the biomass of species or expression of a gene, which is useful for degree estimation. We fill this gap by developing a framework to infer individual vertex degrees using both information of the sampled topology and vertex state. We combine the mean-field theory with combinatorial optimization to learn vertex degrees. Experimental results on real networks with a variety of dynamics demonstrate that our framework can produce reliable degree estimates and dramatically improve existing link prediction methods by replacing the sampled degrees with our estimated degrees.
We study nonlinear dynamics on complex networks. Each vertex $i$ has a state $x_i$ which evolves according to a networked dynamics to a steady-state $x_i^*$. We develop fundamental tools to learn the true steady-state of a small part of the network,
Across many fields, a problem of interest is to predict the transition rates between nodes of a network, given limited stationary state and dynamical information. We give a solution using the principle of Maximum Caliber. We find the transition rate
Social networks provide a new perspective for enterprises to better understand their customers and have attracted substantial attention in industry. However, inferring high quality customer social networks is a great challenge while there are no expl
We present in this paper the behavior of an artificial agent who is a member of a crowd. The behavior is based on the social comparison theory, as well as the trajectory mapping towards an agents goal considering the agents field of vision. The crowd
In this paper we present ACEMod, an agent-based modelling framework for studying influenza epidemics in Australia. The simulator is designed to analyse the spatiotemporal spread of contagion and influenza spatial synchrony across the nation. The indi