ترغب بنشر مسار تعليمي؟ اضغط هنا

Inferring Degrees from Incomplete Networks and Nonlinear Dynamics

53   0   0.0 ( 0 )
 نشر من قبل Chunheng Jiang
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Inferring topological characteristics of complex networks from observed data is critical to understand the dynamical behavior of networked systems, ranging from the Internet and the World Wide Web to biological networks and social networks. Prior studies usually focus on the structure-based estimation to infer network sizes, degree distributions, average degrees, and more. Little effort attempted to estimate the specific degree of each vertex from a sampled induced graph, which prevents us from measuring the lethality of nodes in protein networks and influencers in social networks. The current approaches dramatically fail for a tiny sampled induced graph and require a specific sampling method and a large sample size. These approaches neglect information of the vertex state, representing the dynamical behavior of the networked system, such as the biomass of species or expression of a gene, which is useful for degree estimation. We fill this gap by developing a framework to infer individual vertex degrees using both information of the sampled topology and vertex state. We combine the mean-field theory with combinatorial optimization to learn vertex degrees. Experimental results on real networks with a variety of dynamics demonstrate that our framework can produce reliable degree estimates and dramatically improve existing link prediction methods by replacing the sampled degrees with our estimated degrees.



قيم البحث

اقرأ أيضاً

We study nonlinear dynamics on complex networks. Each vertex $i$ has a state $x_i$ which evolves according to a networked dynamics to a steady-state $x_i^*$. We develop fundamental tools to learn the true steady-state of a small part of the network, without knowing the full network. A naive approach and the current state-of-the-art is to follow the dynamics of the observed partial network to local equilibrium. This dramatically fails to extract the true steady state. We use a mean-field approach to map the dynamics of the unseen part of the network to a single node, which allows us to recover accurate estimates of steady-state on as few as 5 observed vertices in domains ranging from ecology to social networks to gene regulation. Incomplete networks are the norm in practice, and we offer new ways to think about nonlinear dynamics when only sparse information is available.
Across many fields, a problem of interest is to predict the transition rates between nodes of a network, given limited stationary state and dynamical information. We give a solution using the principle of Maximum Caliber. We find the transition rate matrix by maximizing the path entropy of a random walker on the network constrained to reproducing a stationary distribution and a few dynamical averages. A main finding here is that when constrained only by the mean jump rate, the rate matrix is given by a square-root dependence of the rate, $omega_{ab} propto sqrt{p_b/p_a}$, on $p_a$ and $p_b$, the stationary state populations at nodes a and b. We give two examples of our approach. First, we show that this method correctly predicts the correlated rates in a biochemical network of two genes, where we know the exact results from prior simulation. Second, we show that it correctly predicts rates of peptide conformational transitions, when compared to molecular dynamics simulations. This method can be used to infer large numbers of rates on known networks where smaller numbers of steady-state node populations are known.
Social networks provide a new perspective for enterprises to better understand their customers and have attracted substantial attention in industry. However, inferring high quality customer social networks is a great challenge while there are no expl icit customer relations in many traditional OLTP environments. In this paper, we study this issue in the field of passenger transport and introduce a new member to the family of social networks, which is named Co-Travel Networks, consisting of passengers connected by their co-travel behaviors. We propose a novel method to infer high quality co-travel networks of civil aviation passengers from their co-booking behaviors derived from the PNRs (Passenger Naming Records). In our method, to accurately evaluate the strength of ties, we present a measure of Co-Journey Times to count the co-travel times of complete journeys between passengers. We infer a high quality co-travel network based on a large encrypted PNR dataset and conduct a series of network analyses on it. The experimental results show the effectiveness of our inferring method, as well as some special characteristics of co-travel networks, such as the sparsity and high aggregation, compared with other kinds of social networks. It can be expected that such co-travel networks will greatly help the industry to better understand their passengers so as to improve their services. More importantly, we contribute a special kind of social networks with high strength of ties generated from very close and high cost travel behaviors, for further scientific researches on human travel behaviors, group travel patterns, high-end travel market evolution, etc., from the perspective of social networks.
We present in this paper the behavior of an artificial agent who is a member of a crowd. The behavior is based on the social comparison theory, as well as the trajectory mapping towards an agents goal considering the agents field of vision. The crowd of artificial agents were able to exhibit arching, clogging, and bursty exit rates. We were also able to observe a new phenomenon we called double arching, which happens towards the end of the simulation, and whose onset is exhibited by a calm density graph within the exit passage. The density graph is usually bursty at this area. Because of these exhibited phenomena, we can use these agents with high confidence to perform microsimulation studies for modeling the behavior of humans and objects in very realistic ways.
In this paper we present ACEMod, an agent-based modelling framework for studying influenza epidemics in Australia. The simulator is designed to analyse the spatiotemporal spread of contagion and influenza spatial synchrony across the nation. The indi vidual-based epidemiological model accounts for mobility (worker and student commuting) patterns and human interactions derived from the 2006 Australian census and other national data sources. The high-precision simulation comprises 19.8 million stochastically generated software agents and traces the dynamics of influenza viral infection and transmission at several scales. Using this approach, we are able to synthesise epidemics in Australia with varying outbreak locations and severity. For each scenario, we investigate the spatiotemporal profiles of these epidemics, both qualitatively and quantitatively, via incidence curves, prevalence choropleths, and epidemic synchrony. This analysis exemplifies the nature of influenza pandemics within Australia and facilitates future planning of effective intervention, mitigation and crisis management strategies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا