ترغب بنشر مسار تعليمي؟ اضغط هنا

Performance of the ISS-CREAM calorimeter in a calibration beam test

328   0   0.0 ( 0 )
 نشر من قبل Hongguang Zhang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Cosmic Ray Energetics And Mass experiment for the International Space Station (ISS-CREAM) was installed on the ISS to measure high-energy cosmic-ray elemental spectra for the charge range $rm Z=1$ to 26. The ISS-CREAM instrument includes a tungsten scintillating-fiber calorimeter preceded by a carbon target for energy measurements. The carbon target induces hadronic interactions, and showers of secondary particles develop in the calorimeter. The energy deposition in the calorimeter is proportional to the particle energy. As a predecessor to ISS-CREAM, the balloon-borne CREAM instrument was successfully flown seven times over Antarctica for a cumulative exposure of 191 days. The CREAM calorimeter demonstrated its capability to measure energies of cosmic-ray particles, and the ISS-CREAM calorimeter is expected to have a similar performance. Before the launch, an engineering-unit calorimeter was shipped to CERN for calibration and performance tests. This beam test included position, energy, and angle scans of electron and pion beams together with a high-voltage scan for calibration and characterization. Additionally, an attenuation effect in the scintillating fibers was studied. In this paper, beam test results, including corrections for the attenuation effect, are presented.

قيم البحث

اقرأ أيضاً

The CREAM calorimeter, designed to measure the spectra of cosmic-ray nuclei from under 1 TeV to 1000 TeV, is a 20 radiation length (X0) deep sampling calorimeter. The calorimeter is comprised of 20 layers of tungsten interleaved with 20 layers of sci ntillating fiber ribbons, and is preceded by a pair of graphite interaction targets providing about 0.42 proton interaction lengths (lambda int). The calorimeter was placed in one of CERNs SPS accelerator beams for calibration and testing. Beams of 150 GeV electrons were used for calibration, and a variety of electron, proton, and nuclear fragment beams were used to test the simulation model of the detector. In this paper we discuss the performance of the calorimeter in the electron beam and compare electron beam data with simulation results.
A single calorimeter station for the Muon $g-2$ experiment at Fermilab includes the following subsystems: a 54-element array of PbF$_{2}$ Cherenkov crystals read out by large-area SiPMs, bias and slow-control electronics, a suite of 800 MSPS waveform digitizers, a clock and control distribution network, a gain calibration and monitoring system, and a GPU-based frontend read out through a MIDAS data acquisition environment. The entire system performance was evaluated using 2.5 - 5 GeV electrons at the End Station Test Beam at SLAC. This paper includes a description of the individual subsystems and the results of measurements of the energy response and resolution, energy-scale stability, timing resolution, and spatial uniformity. All measured performances meet or exceed the $g-2$ experimental requirements. Based on the success of the tests, the complete production of the required 24 calorimeter stations has been made and installation into the main experiment is complete. Furthermore, the calorimeter response measurements determined here informed the design of the reconstruction algorithms that are now employed in the running $g-2$ experiment.
A silicon-tungsten (Si-W) sampling calorimeter, consisting of 19 alternate layers of silicon pad detectors (individual pad area of 1~cm$^2$) and tungsten absorbers (each of one radiation length), has been constructed for measurement of electromagneti c showers over a large energy range. The signal from each of the silicon pads is readout using an ASIC with a dynamic range from $-300$~fC to $+500$~fC. Another ASIC with a larger dynamic range, $pm 600$~fC has been used as a test study. The calorimeter was exposed to pion and electron beams at the CERN Super Proton Synchrotron (SPS) to characterise the response to minimum ionising particles (MIP) and showers from electromagnetic (EM) interactions. Pion beams of 120 GeV provided baseline measurements towards the understanding of the MIP behaviour in the silicon pad layers, while electron beams of energy from 5 GeV to 60 GeV rendered detailed shower profiles within the calorimeter. The energy deposition in each layer, the longitudinal shower profile, and the total energy deposition have been measured for each incident electron energy. Linear behaviour of the total measured energy ($E$) with that of the incident particle energy ($E_{0}$) ensured satisfactory calorimetric performance. For a subset of the data sample, selected based on the cluster position of the electromagnetic shower of the incident electron, the dependence of the measured energy resolution on $E_{0}$ has been found to be $sigma/E = (15.36/sqrt{E_0(mathrm{GeV)}} oplus 2.0) %$.
CREAM (Cosmic Ray Energetics And Mass) is a multi-flight balloon mission designed to collect direct data on the elemental composition and individual energy spectra of cosmic rays. Two instrument suites have been built to be flown alternately on a yea rly base. The tungsten/Sci-Fi imaging calorimeter for the second flight, scheduled for December 2005, was calibrated with electron and proton beams at CERN. A calibration procedure based on the study of the longitudinal shower profile is described and preliminary results of the beam test are presented.
101 - G. Eigen , T. Buanes 2009
We present herein our experience with the calibration system in the CALICE AHCAL prototype in the test beam and discuss characterizations of the SiPM response curves.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا