We present herein our experience with the calibration system in the CALICE AHCAL prototype in the test beam and discuss characterizations of the SiPM response curves.
The Cosmic Ray Energetics And Mass experiment for the International Space Station (ISS-CREAM) was installed on the ISS to measure high-energy cosmic-ray elemental spectra for the charge range $rm Z=1$ to 26. The ISS-CREAM instrument includes a tungst
en scintillating-fiber calorimeter preceded by a carbon target for energy measurements. The carbon target induces hadronic interactions, and showers of secondary particles develop in the calorimeter. The energy deposition in the calorimeter is proportional to the particle energy. As a predecessor to ISS-CREAM, the balloon-borne CREAM instrument was successfully flown seven times over Antarctica for a cumulative exposure of 191 days. The CREAM calorimeter demonstrated its capability to measure energies of cosmic-ray particles, and the ISS-CREAM calorimeter is expected to have a similar performance. Before the launch, an engineering-unit calorimeter was shipped to CERN for calibration and performance tests. This beam test included position, energy, and angle scans of electron and pion beams together with a high-voltage scan for calibration and characterization. Additionally, an attenuation effect in the scintillating fibers was studied. In this paper, beam test results, including corrections for the attenuation effect, are presented.
A new method for calibrating the hadron response of a segmented calorimeter is developed and successfully applied to beam test data. It is based on a principal component analysis of energy deposits in the calorimeter layers, exploiting longitudinal s
hower development information to improve the measured energy resolution. Corrections for invisible hadronic energy and energy lost in dead material in front of and between the calorimeters of the ATLAS experiment were calculated with simulated Geant4 Monte Carlo events and used to reconstruct the energy of pions impinging on the calorimeters during the 2004 Barrel Combined Beam Test at the CERN H8 area. For pion beams with energies between 20 GeV and 180 GeV, the particle energy is reconstructed within 3% and the energy resolution is improved by between 11% and 25% compared to the resolution at the electromagnetic scale.
The new muon (g-2) experiment E989 at Fermilab will be equipped with a laser calibration system for all the 1296 channels of the calorimeters. An integrating sphere and an alternative system based on an engineered diffuser have been considered as pos
sible light distributors for the experiment. We present here a detailed comparison of the two based on temporal response, spatial uniformity, transmittance and time stability.
The LHCb detector will be upgraded to make more efficient use of the available luminosity at the LHC in Run III and extend its potential for discovery. The Ring Imaging Cherenkov detectors are key components of the LHCb detector for particle identifi
cation. In this paper we describe the setup and the results of tests in a charged particle beam, carried out to assess prototypes of the upgraded opto-electronic chain from the Multi-Anode PMT photosensor to the readout and data acquisition system.
In Japan, China and Russia, there are several test beam lines available or will become available in near future. Those are open for users who need electron, muon and charged pion beams with energies of 1-50 GeV for any tests of small-size detectors.
In this manuscript I present a current status of those test beam facilities in the Asian region.