ترغب بنشر مسار تعليمي؟ اضغط هنا

The effect of interorbital scattering on superconductivity in doped Dirac materials

72   0   0.0 ( 0 )
 نشر من قبل David Dentelski
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Unconventional superconductivity has been discovered in a variety of doped materials, including topological insulators, semimetals and twisted bilayers. A unifying property of these systems is strong orbital hybridization, which involves pairing of states with non-trivial Bloch wave functions. In contrast to naive expectation, many of these superconductors are relatively resilient to disorder. Here we study the effects of a generic disorder on superconductivity in doped 3D Dirac systems, which serve as a paradigmatic example for the dispersion near a band crossing point. We argue that due to strong orbital hybridization, interorbital scattering processes are naturally present and must be taken into account. We calculate the reduction of the critical temperature for a variety of pairing states and scattering channels using Abrikosov-Gorkov theory. In that way, the role of disorder is captured by a single parameter $Gamma$, the pair scattering rate. This procedure is very general and can be readily applied to different band structures and disorder configurations. Our results show that interorbital scattering has a significant effect on superconductivity, where the robustness of different pairing states highly depends on the relative strength of the different interorbital scattering channels. Our analysis also reveals a protection, analogous to the Andersons theorem, of the odd-parity pairing state with total angular momentum zero (the B-phase of superfluid $^3$He). This odd-pairty state is a singlet of partners under $mathcal{CT}$ symmetry (rather than $mathcal{T}$ symmetry in the standard Andersons theory), where $mathcal{C}$ and $mathcal{T}$ are chiral and time-reversal symmetries, respectively. As a result, it is protected against any disorder potential that respects $mathcal{CT}$ symmetry, which includes a family of time-reversal odd (magnetic) impurities.



قيم البحث

اقرأ أيضاً

158 - V. K. Maurya , R. Jha , Shruti 2015
We report on the impact of hydrostatic pressure on the superconductivity of optimally (Indium) doped SnTe which is established to be derived from a topological crystalline insulating phase. Single crystals of Sn1-xInxTe were synthesized by a modified Bridgman method that exhibited maximum superconducting Tc of 4.4 K for x= 0.5. Hydrostatic pressure upto 2.5 GPa was applied on the crystals of Sn0.5In0.5Te and electrical resistivity as a function of temperature and pressure was measured. We observed decrease in onset superconducting transition temperature from 4.4 K to 2.8 K on increasing pressure from ambient to 2.5 GPa. The normal state resistivity also decreased abruptly by an order of magnitude at 0.5 GPa but for higher pressures, the same decreased marginally. From onset, offset and zero resistivity values, dTc/dP of -0.6K/GPa was confirmed. The low temperature normal state resistivity followed T^2 dependence suggesting Fermi liquid behaviour both for ambient and high pressure data. This increase in metallic characteristics accompanied by normal state Fermi liquid behaviour is in accordance with a dome structure for Tc variation with varying carrier concentration.
87 - J. Fink , E.D.L. Rienks , M.Yao 2020
We report an angle-resolved photoemission study of a series of hole and electron doped iron-based superconductors, their parent compound BaFe2As2, and their cousins BaCr2As2 and BaCo2As2. We focus on the energy (E) dependent scattering rate Gamma(E) as a function of the 3d count and on the renormalization function Z(E) of the inner hole pocket, which is the hot spot in these compounds. We obtain a non-Fermi-liquid-like linear in energy scattering rate Gamma(E>> kBT), independent of the dopant concentration. The main result is that the slope beta=Gamma(E >> kBT)/E, reaches its maxima near optimal doping and scales with the superconducting transition temperature. This supports the spin fluctuation model for superconductivity for these materials. In the optimally hole-doped compound, the slope of the scattering rate of the inner hole pocket is about three times bigger than the Planckian limit Gamma(E)/E~1. This result together with the energy dependence of the renormalization function Z(E) signals very incoherent charge carriers in the normal state which transform at low temperatures to a coherent unconventional superconducting state.
We theoretically study intrinsic superconductivity in doped Dirac semimetals. Dirac semimetals host bulk Dirac points, which are formed by doubly degenerate bands, so the Hamiltonian is described by a $4 times 4$ matrix and six types of $k$-independe nt pair potentials are allowed by the Fermi-Dirac statistics. We show that the unique spin-orbit coupling leads to characteristic superconducting gap structures and $d$ vectors on the Fermi surface and the electron-electron interaction between intra and interorbitals gives a novel phase diagram of superconductivity. It is found that when the inter-orbital attraction is dominant, an unconventional superconducting state with point nodes appears. To verify the experimental signature of possible superconducting states, we calculate the temperature dependence of bulk physical properties such as electronic specific heat and spin susceptibility and surface state. In the unconventional superconducting phase, either dispersive or flat Andreev bound states appear between point nodes, which leads to double peaks or single peak in the surface density of states, respectively. As a result, possible superconducting states can be distinguished by combining bulk and surface measurements.
154 - Yuxing Zhou , Bin Li , Zhefeng Lou 2020
A feasible strategy to realize the Majorana fermions is searching for a simple compound with both bulk superconductivity and Dirac surface states. In this paper, we performed calculations of electronic band structure, the Fermi surface and surface st ates, as well as measured the resistivity, magnetization, specific heat for TlSb compound with a CsCl-type structure. The band structure calculations show that TlSb is a Dirac semimetal when spin-orbit coupling is taken into account. Meanwhile, we first found that TlSb is a type-II superconductor with $T_c$ = 4.38 K, $H_{c1}$(0) = 148 Oe, $H_{c2}$(0) = 1.12 T and $kappa_{GL}$ = 10.6, and confirmed it to be a moderately coupled s-wave superconductor. Although we can not determine which bands near the Fermi level $E_F$ to be responsible for superconductivity, its coexistence with the topological surface states implies that TlSb compound may be a simple material platform to realize the fault-tolerant quantum computations.
High-pressure superconductivity in a rare-earth doped Ca0.86Pr0.14Fe2As2 single crystalline sample has been studied up to 12 GPa and temperatures down to 11 K using designer diamond anvil cell under a quasi-hydrostatic pressure medium. The electrical resistance measurements were complemented by high pressure and low temperature x-ray diffraction studies at a synchrotron source. The electrical resistance measurements show an intriguing observation of superconductivity under pressure, with Tc as high as ~51 K at 1.9 GPa, presenting the highest Tc reported in the intermetallic class of 1-2-2 iron-based superconductors. The resistive transition observed suggests a possible existence of two superconducting phases at low pressures of 0.5 GPa: one phase starting at Tc1 ~48 K, and the other starting at Tc2~16 K. The two superconducting transitions show distinct variations with increasing pressure. High pressure low temperature structural studies indicate that the superconducting phase is a collapsed tetragonal ThCr2Si2-type (122) crystal structure. Our high pressure studies indicate that high Tc state attributed to non-bulk superconductivity in rare-earth doped 1-2-2 iron-based superconductors is stable under compression over a broad pressure range.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا