ﻻ يوجد ملخص باللغة العربية
Probabilistic graphical models, such as Markov random fields (MRF), exploit dependencies among random variables to model a rich family of joint probability distributions. Sophisticated inference algorithms, such as belief propagation (BP), can effectively compute the marginal posteriors. Nonetheless, it is still difficult to interpret the inference outcomes for important human decision making. There is no existing method to rigorously attribute the inference outcomes to the contributing factors of the graphical models. Shapley values provide an axiomatic framework, but naively computing or even approximating the values on general graphical models is challenging and less studied. We propose GraphShapley to integrate the decomposability of Shapley values, the structure of MRFs, and the iterative nature of BP inference in a principled way for fast Shapley value computation, that 1) systematically enumerates the important contributions to the Shapley values of the explaining variables without duplicate; 2) incrementally compute the contributions without starting from scratches. We theoretically characterize GraphShapley regarding independence, equal contribution, and additivity. On nine graphs, we demonstrate that GraphShapley provides sensible and practical explanations.
Optimal Transport (OT) is being widely used in various fields such as machine learning and computer vision, as it is a powerful tool for measuring the similarity between probability distributions and histograms. In previous studies, OT has been defin
We investigate a correspondence between two formalisms for discrete probabilistic modeling: probabilistic graphical models (PGMs) and tensor networks (TNs), a powerful modeling framework for simulating complex quantum systems. The graphical calculus
Probabilistic inferences distill knowledge from graphs to aid human make important decisions. Due to the inherent uncertainty in the model and the complexity of the knowledge, it is desirable to help the end-users understand the inference outcomes. D
We consider the problem of inferring a graphical Potts model on a population of variables, with a non-uniform number of Potts colors (symbols) across variables. This inverse Potts problem generally involves the inference of a large number of paramete
With the wide adoption of functional magnetic resonance imaging (fMRI) by cognitive neuroscience researchers, large volumes of brain imaging data have been accumulated in recent years. Aggregating these data to derive scientific insights often faces