ترغب بنشر مسار تعليمي؟ اضغط هنا

Hard-gap spectroscopy in a self-defined mesoscopic InAs/Al nanowire Josephson junction

199   0   0.0 ( 0 )
 نشر من قبل Patrick Zellekens
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Superconductor/semiconductor-nanowire hybrid structures can serve as versatile building blocks to realize Majorana circuits or superconducting qubits based on quantized levels such as Andreev qubits. For all these applications it is essential that the superconductor-semiconductor interface is as clean as possible. Furthermore, the shape and dimensions of the superconducting electrodes needs to be precisely controlled. We fabricated self-defined InAs/Al core/shell nanowire junctions by a fully in-situ approach, which meet all these criteria. Transmission electron microscopy measurements confirm the sharp and clean interface between the nanowire and the in-situ deposited Al electrodes which were formed by means of shadow evaporation. Furthermore, we report on tunnel spectroscopy, gate and magnetic field-dependent transport measurements. The achievable short junction lengths,the observed hard-gap and the magnetic field robustness make this new hybrid structure very attractive for applications which rely on a precise control of the number of sub-gap states, like Andreev qubits or topological systems.



قيم البحث

اقرأ أيضاً

We report on half-integer Shapiro steps observed in an InAs nanowire Josephson junction. We observed the Shapiro steps of the short ballistic InAs nanowire Josephson junction and found anomalous half-integer steps in addition to the conventional inte ger steps. The half-integer steps disappear as the temperature increases or transmission of the junction decreases. These experimental results agree closely with numerical calculation of the Shapiro response for the skewed current phase relation in a short ballistic Josephson junction.
94 - M. F. Goffman 2017
We present a quantitative characterization of an electrically tunable Josephson junction defined in an InAs nanowire proximitized by an epitax-ially-grown superconducting Al shell. The gate-dependence of the number of conduction channels and of the s et of transmission coefficients are extracted from the highly nonlinear current-voltage characteristics. Although the transmissions evolve non-monotonically, the number of independent channels can be tuned, and configurations with a single quasi-ballistic channel achieved.
We have studied mesoscopic Josephson junctions formed by highly $n$-doped InAs nanowires and superconducting Ti/Pb source and drain leads. The current-voltage properties of the system are investigated by varying temperature and external out-of-plane magnetic field. Superconductivity in the Pb electrodes persists up to $ sim 7$ K and with magnetic field values up to 0.4 T. Josephson coupling at zero backgate voltage is observed up to 4.5 K and the critical current is measured to be as high as 615 nA. The supercurrent suppression as a function of the magnetic field reveals a diffraction pattern that is explained by a strong magnetic flux focusing provided by the superconducting electrodes forming the junction.
We report a systematic experimental study of mesoscopic conductance fluctuations in superconductor/normal/superconductor (SNS) devices Nb/InAs-nanowire/Nb. These fluctuations far exceed their value in the normal state and strongly depend on temperatu re even in the low-temperature regime. This dependence is attributed to high sensitivity of perfectly conducting channels to dephasing and the SNS fluctuations thus provide a sensitive probe of dephasing in a regime where normal transport fails to detect it. Further, the conductance fluctuations are strongly non-linear in bias voltage and reveal sub-gap structure. The experimental findings are qualitatively explained in terms of multiple Andreev reflections in chaotic quantum dots with imperfect contacts.
We report on the fabrication and measurements of planar mesoscopic Josephson junctions formed by InAs nanowires coupled to superconducting Nb terminals. The use of Si-doped InAs-nanowires with different bulk carrier concentrations allowed to tune the properties of the junctions. We have studied the junction characteristics as a function of temperature, gate voltage, and magnetic field. In junctions with high doping concentrations in the nanowire Josephson supercurrent values up to 100,nA are found. Owing to the use of Nb as superconductor the Josephson coupling persists at temperatures up to 4K. In all junctions the critical current monotonously decreased with the magnetic field, which can be explained by a recently developed theoretical model for the proximity effect in ultra-small Josephson junctions. For the low-doped Josephson junctions a control of the critical current by varying the gate voltage has been demonstrated. We have studied conductance fluctuations in nanowires coupled to superconducting and normal metal terminals. The conductance fluctuation amplitude is found to be about 6 times larger in superconducting contacted nanowires. The enhancement of the conductance fluctuations is attributed to phase-coherent Andreev reflection as well as to the large number of phase-coherent channels due to the large superconducting gap of the Nb electrodes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا