ﻻ يوجد ملخص باللغة العربية
We use The Sun Watcher with Active Pixel System detector and Image Processing (SWAP) imager onboard the Project for Onboard Autonomy 2 (PROBA2) mission to study the evolution of large-scale EUV structures in the solar corona observed throughout Solar Cycle 24 (from 2010 to 2019). We discuss the evolution of the on-disk coronal features and at different heights above the solar surface based on EUV intensity changes. We also look at the evolution of the corona in equatorial and polar regions and compare them at different phases of the solar cycle, as well as with sunspot number evolution and with the PROBA2/Lyman-Alpha Radiometer (LYRA) signal. The main results are as follows: The three time series (SWAP on-disk average brightness, sunspot number and LYRA irradiance) are very well correlated, with correlation coefficients around 0.9. The average rotation rate of bright features at latitudes of +15, 0, and -15 degrees was around 15 degree/day throughout the period studied. A secondary peak in EUV averaged intensity at the Poles was observed on the descending phase of SC24. These peaks (at North and South poles respectively) seem to be associated with the start of the development of the (polar) coronal holes. Large-scale off-limb structures were visible from around March 2010 to around March 2016, meaning that they were absent at the minimum phase of solar activity. A fan at the North pole persisted for more than 11 Carrington rotations (February 2014 to March 2015), and it could be seen up to altitudes of 1.6 Rs.
The Sun Watcher with Active Pixels and Image Processing (SWAP) EUV solar telescope on board the Project for On-Board Autonomy 2 (PROBA2) spacecraft has been regularly observing the solar corona in a bandpass near 17.4 nm since February 2010. With a f
Using Hinode EUV Imaging Spectrometer (EIS) spectra recorded daily at Sun center from the end of 2006 to early 2011, we studied the long-term evolution of the quiet corona. The light curves of the higher temperature emission lines exhibit larger vari
With multiple vantage points around the Sun, STEREO and SDO imaging observations provide a unique opportunity to view the solar surface continuously. We use He II 304 A data from these observatories to isolate and track ten active regions and study t
We perform calculations of our one-dimensional, two-zone disk model to study the long-term evolution of the circumstellar disk. In particular, we adopt published photoevaporation prescriptions and examine whether the photoevaporative loss alone, coup
Observations of the early rise and propagation phases of solar eruptive prominences can provide clues about the forces acting on them through the behavior of their acceleration with height. We have analyzed such an event, observed on 13 April 2010 by