ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic Flux Transport and the Long-Term Evolution of Solar Active Regions

93   0   0.0 ( 0 )
 نشر من قبل Ignacio Ugarte-Urra
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

With multiple vantage points around the Sun, STEREO and SDO imaging observations provide a unique opportunity to view the solar surface continuously. We use He II 304 A data from these observatories to isolate and track ten active regions and study their long-term evolution. We find that active regions typically follow a standard pattern of emergence over several days followed by a slower decay that is proportional in time to the peak intensity in the region. Since STEREO does not make direct observations of the magnetic field, we employ a flux-luminosity relationship to infer the total unsigned magnetic flux evolution. To investigate this magnetic flux decay over several rotations we use a surface flux transport model, the Advective Flux Transport (AFT) model, that simulates convective flows using a time-varying velocity field and find that the model provides realistic predictions when information about the active regions magnetic field strength and distribution at peak flux is available. Finally, we illustrate how 304 AA images can be used as a proxy for magnetic flux measurements when magnetic field data is not accessible.



قيم البحث

اقرأ أيضاً

75 - Ting Li , Anqin Chen , Yijun Hou 2021
With the aim of understanding how the magnetic properties of active regions (ARs) control the eruptive character of solar flares, we analyze 719 flares of Geostationary Operational Environmental Satellite (GOES) class $geq$C5.0 during 2010$-$2019. We carry out the first statistical study that investigates the flare-coronal mass ejections (CMEs) association rate as function of the flare intensity and the AR characteristics that produces the flare, in terms of its total unsigned magnetic flux ($Phi$$_{AR}$). Our results show that the slope of the flare-CME association rate with flare intensity reveals a steep monotonic decrease with $Phi$$_{AR}$. This means that flares of the same GOES class but originating from an AR of larger $Phi$$_{AR}$, are much more likely confined. Based on an AR flux as high as 1.0$times$$10^{24}$ Mx for solar-type stars, we estimate that the CME association rate in X100-class ``superflares is no more than 50%. For a sample of 132 flares $geq$M2.0 class, we measure three non-potential parameters including the length of steep gradient polarity inversion line (L$_{SGPIL}$), the total photospheric free magnetic energy (E$_{free}$) and the area with large shear angle (A$_{Psi}$). We find that confined flares tend to have larger values of L$_{SGPIL}$, E$_{free}$ and A$_{Psi}$ compared to eruptive flares. Each non-potential parameter shows a moderate positive correlation with $Phi$$_{AR}$. Our results imply that $Phi$$_{AR}$ is a decisive quantity describing the eruptive character of a flare, as it provides a global parameter relating to the strength of the background field confinement.
We present new measurements of the dependence of the Extreme Ultraviolet radiance on the total magnetic flux in active regions as obtained from the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager on board the Solar Dynamic s Observatory (SDO). Using observations of nine active regions tracked along different stages of evolution, we extend the known radiance - magnetic flux power-law relationship ($IproptoPhi^{alpha}$) to the AIA 335 AA passband, and the Fe XVIII 93.93 AA spectral line in the 94 AA passband. We find that the total unsigned magnetic flux divided by the polarity separation ($Phi/D$) is a better indicator of radiance for the Fe XVIII line with a slope of $alpha=3.22pm0.03$. We then use these results to test our current understanding of magnetic flux evolution and coronal heating. We use magnetograms from the simulated decay of these active regions produced by the Advective Flux Transport (AFT) model as boundary conditions for potential extrapolations of the magnetic field in the corona. We then model the hydrodynamics of each individual field line with the Enthalpy-based Thermal Evolution of Loops (EBTEL) model with steady heating scaled as the ratio of the average field strength and the length ($bar{B}/L$) and render the Fe XVIII and 335 AA emission. We find that steady heating is able to partially reproduce the magnitudes and slopes of the EUV radiance - magnetic flux relationships and discuss how impulsive heating can help reconcile the discrepancies. This study demonstrates that combined models of magnetic flux transport, magnetic topology and heating can yield realistic estimates for the decay of active region radiances with time.
Dynamical changes in the solar corona have proven to be very important in inducing seismic waves into the photosphere. Different mechanisms for their generation have been proposed. In this work, we explore the magnetic field forces as plausible mecha nisms to generate sunquakes as proposed by Hudson, Fisher and Welsch. We present a spatial and temporal analysis of the line-of-sight magnetic field variations induced by the seismically active 2003 October 29 and 2005 January 15 solar flares and compare these results with other supporting observations.
We use The Sun Watcher with Active Pixel System detector and Image Processing (SWAP) imager onboard the Project for Onboard Autonomy 2 (PROBA2) mission to study the evolution of large-scale EUV structures in the solar corona observed throughout Solar Cycle 24 (from 2010 to 2019). We discuss the evolution of the on-disk coronal features and at different heights above the solar surface based on EUV intensity changes. We also look at the evolution of the corona in equatorial and polar regions and compare them at different phases of the solar cycle, as well as with sunspot number evolution and with the PROBA2/Lyman-Alpha Radiometer (LYRA) signal. The main results are as follows: The three time series (SWAP on-disk average brightness, sunspot number and LYRA irradiance) are very well correlated, with correlation coefficients around 0.9. The average rotation rate of bright features at latitudes of +15, 0, and -15 degrees was around 15 degree/day throughout the period studied. A secondary peak in EUV averaged intensity at the Poles was observed on the descending phase of SC24. These peaks (at North and South poles respectively) seem to be associated with the start of the development of the (polar) coronal holes. Large-scale off-limb structures were visible from around March 2010 to around March 2016, meaning that they were absent at the minimum phase of solar activity. A fan at the North pole persisted for more than 11 Carrington rotations (February 2014 to March 2015), and it could be seen up to altitudes of 1.6 Rs.
Sequences of line-of-sight (LOS) magnetograms recorded by the Michelson-Doppler Imager are used to quantitatively characterize photospheric magnetic structure and evolution in three active regions that rotated across the Suns disk during the Whole He liosphere Interval (WHI), in an attempt to relate the photospheric magnetic properties of these active regions to flares and coronal mass ejections (CMEs). Several approaches are used in our analysis, on scales ranging from whole active regions, to magnetic features, to supergranular scales, and, finally, to individual pixels. We calculated several parameterizations of magnetic structure and evolution that have previously been associated with flare and CME activity, including total unsigned magnetic flux, magnetic flux near polarity inversion lines, amount of cancelled flux, the proxy Poynting flux, and helicity flux. To catalog flare events, we used flare lists derived from both GOES and RHESSI observations. By most such measures, AR 10988 should have been the most flare- and CME-productive active region, and AR 10989 the least. Observations, however, were not consistent with this expectation: ARs 10988 and 10989 produced similar numbers of flares, and AR 10989 also produced a few CMEs. These results highlight present limitations of statistics-based flare and CME forecasting tools that rely upon line-of-sight photospheric magnetic data alone.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا